Perl 5.0

Un lenguaje multiuso

$Autor = ‘José Miguel Prellezo Gutiérrez’;
$Mail = ‘jprellezo@eresmas.com’;
$Rev = 1.6;

$Fecha = “"Octubre, 2002";

Tabla de Contenidos

| B 1 g /o T [UTolol e o FU PP 4
HiS O A 1 ae i 4
|1y = = Yol T] o PP 4
PeCUliariadades .. .o.uieiieii e 4

II. TIPS A Aat0S .ttt e e e e e 6
o= F= Tl (3 S 6
F N g = AV (Y) TP PP 6
[=T T () P PP 7

III. Operadores y control del FIUJO c.oiuiiiiii i e 9
[T 31T o T PP 9
153 o o T 1P 9
VerdaderO Y falS0 .uuueiiiii i i 10
EXPreSIONES [OGICAS . ettt e 11
(@01 o= e Lo o == P 11
O]01<] = [o] =T e [T o] o o 1= TP 12
(0] o7<Tr=Ta (o] gte 30 = T o TP 12
(@foT o) o] e 1= I 1 [V [TR 13

LAY 1 o] o T T 19
D= T ot o o N2 1o 19
2] oY [=P 20
Funciones integradas €n Perl.......c.o i 21
) {1 o= T = 1= P 25

V. T 1< o 1P 28
ADFIF fICREIOS o 28
T 0 5 = 28
] o] o) = 28
Cerrar €l fICNEIO .o 29
Yot WY =Y LT Tl g 1181 r= TN o118 =1 o = T 29
Funciones para el manejo de fiCheros.....cv i e 29
Operadores para testear fiCheros.....ccovii i 30

VI. EXPresiones r@QUIAIESiuiiiiii ittt et e e e e e e e neeees 31
(@0 7=] o= T (o] o =T PP 31
Caracteres especiales €N PatrONES . ..ottt e 31
Sustitucion de variables €N PatrONESvii i it 35

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 1

José Miguel Prellezo Gutiérrez Octubre 2002

[[aTe fo R e [l of=] = ol = ol == 35

Reuso de porciones de PatiONesS ..oiuii it i 36
Extraer subStrings e UNa MEgeXD «iuuiiiiiiii i i i i e a e a e aaneas 37
Precedencia de los caracteres especialesccvvviiiiiiiiiiiiiii i e 37
Especificar un delimitador de patron ... 37
OPpCionNes de MaAatCh .. e 38
= oY Y=Y =T FoY e [T U =1 o (U oi o] o P 39
= oY Y=Y =T FoY e [=YR =11 = Lol T] 1 40
VII. Variables @SPECIaleS ..uiviiiii i 41
VIII. Paquetes ¥ MOAUIOS .uiuiiiiii i e et e et e e e ae e e e eaeaeaeas 42
P A QUL ES e 42

17 o Te [V 1o T TP PP 43
IX. Programacion Orientada @ ObJetos ...vvvviiiiriiiiiii e 46
L= T3P 46
(@] o) =1 /o 1= TP 48
UNIVERSAL: La raiz de todas 1as ClasesS......uuviiuiniiiiiiiiiiieiee e e 49
X. MOAUIOS A€ USO COMUN ..uiinitiiitee ettt et ettt e et et e et e e e e e ens 50
= 1 50
I Y 0] o] 1 PP 51
] PP 52
XI. DBIL: Dases de datiscuuuieii e et et 54
g1 =1 = o1 o o P TP PPRPPRPR 54
Conexion a 1a base de datosovuieieiiiiiii e 54
Operacion de CONSUILA (SELECT) .uuiuiiiiiir ittt ieitieneeenerneierneresnerssnerssnerasnersenens 54
Operaciones de actualizacién (INSERT, UPDATE, DELETE) ..c.vviiviiiiieieiiieieeieeeeaeaens 55
L= 03 Lol 10 1= 55
Desconexion de la base de datosc.vviuiiiiiiii e 56
(@0o]) o] e L= =T o o T /=T PP 56

| g} o) 'n g = ToiTe T o HP PP PRT 56
XII. CGI: Common Gateway INterfaCe.....ooviiiiiiiiii i e aea s 58
Secuencia de acCioN@S CGIuiuiiiiiiiiii e 59
MEtOdOS A€ ENVIO GET ¥ POS T it ittt ittt ittt ittt et e et re e st e ene e e rarterenenrnenes 59
Paso de parametros del servidor al programa CGlIc.vviiiiiiiiirireeiiieirerteneneneenes 61
Procesado de la informacidon en el programa CGI.........ouvuviiiiininiiieiiieiiieeneerenenenanns 62
Devolucién de datos desde el programa CGL........ocivuiuiiiiiiiiiiiiiiineieieiee e erenenenaans 62
=] ol Y G P 63
Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 2

José Miguel Prellezo Gutiérrez Octubre 2002

=] I e Yo [T o T 63

XIII. Programacion €n red: SOCKEES . .vuiviririiiiii e e ra e e aas 67
Entrada/Salida Simple ..o e 67
INformacion SODIre UN@ CONEXION ...vuiutitieieeeee ettt e e e e e e aaeens 68
Ejemplo: Servidor Web ... e 68

X1V. OLE €N WINAOWS .. eiieieiieieie it ettt et e e e e e e e e et e e e e e ee e e eaeeeaeeeneeenenananens 70
(o] gl go] e [T o *q o] Lo o =] oSN TP 70
CoNtrol dE EXCEI uuueiie i e 70
(0o o) o] e LIV o) o'c KPP 71

DS {1 | PP 73
D I o= 1= 73

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 3

José Miguel Prellezo Gutiérrez Octubre 2002

I. INTRODUCCION

Historia

Perl (Practical Extraction y Report Language) es un lenguaje de programacién que se cred
originalmente para extraer informes de ficheros de texto y utilizar dicha informacion para
preparar informes. Actualmente ha evolucionado de forma que es posible realizar labores
de administracidn en cualquier sistema operativo. Debe gran parte de su popularidad a
tratarse de un intérprete que se distribuye de forma gratuita. Un script genérico de Perl
puede ejecutarse en cualquier plataforma en la que tengamos un intérprete disponible.

Con el crecimiento del WWW se vio que era necesario realizar programas CGI y Perl se
convirtié en la eleccidén natural para los que ya estaban familiarizados con este lenguaje. El
aumento de sitios Web ha transformado el papel de Perl de un lenguaje de Script oscuro y
desconocido a la herramienta principal de programacién CGI.

Instalacion

Dependiendo del sistema operativo que se utilice, habra que utilizar una distribucién de
Perl u otra. La principal referencia figura en http://www.perl.com. No obstante, en
http://www.cpan.org podemos encontrar mas distribuciones, disponiendo de al menos una
para cada plataforma.

Este documento se centra en la utilizacion de Perl desde los sistemas operativos de la serie
Microsoft Windows igual o superior a la 95. Una excelente fuente de recursos para Perl
sobre Windows la podemos encontrar en http://www.activestate.com

Es conveniente utilizar como directorio base de la instalacién C:\Perl, y afiadir al PATH la
ruta C:\PERL\BIN. El tipico programa “Hola, mundo” en Perl se realiza poniendo en un
fichero (supongamos “hola.pl”) las siguientes instrucciones:

#!c:/perl/perl
print “Hola mundo\n”;

Para ejecutar basta con escribir, desde una ventana de MS-DOS:

perl hola.pl

Peculiariadades

e Perl es un lenguaje case-sensitive.

e Para editar el cédigo fuente necesitamos simplemente un editor de texto. El Notepad
o cualquier otro con el que estemos familiarizados puede valer.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 4
José Miguel Prellezo Gutiérrez Octubre 2002

http://www.perl.com/
http://www.cpan.org/
http://www.activestate.com/

¢ Se ejecuta desde la linea de comandos de una ventana del sistema operativo.
e Los comentarios comienzan con el caracter #
e Las instrucciones terminan en punto y coma.

e La funcion print sirve para mostrar informacidén por pantalla, y admite formatos muy
diversos aunqgue sencillos de comprender. En Perl hay mucha flexibilidad para escribir
los argumentos:

print (“Un texto”, “Otro texto”); # con paréntesis
print “Un texto”, “Otro texto”; # sin parentesis

e Perl ofrece una ayuda en linea desde la consola de comandos. Por ejemplo, para
obtener ayuda sobre la funcién print, escribiremos en una ventana MSDOS:

perldoc -f print

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 5
José Miguel Prellezo Gutiérrez Octubre 2002

II. TIPOS DE DATOS

Por defecto, no es necesario declarar las variables previamente a su uso. Las variables se
pueden empezar a usar directamente en las expresiones. Existen tres tipos basicos de
variables, que son:

Escalar ($)
Las variables escalares empiezan por el caracter $. Ejemplos:
$a = 5;
Sb = "xxx";
Sc = Sa++; # Sa++ es como en C, o sea, $Sa + 1

Un escalar puede almacenar la siguiente informacion:
e NuUmeros
e Strings
e Referencias a otras variables

e Descriptores de ficheros

Array (@)

Las variables array empiezan por el caracter @, y sirven para agrupar un conjunto de
variables de tipo escalar.

@a = (95, 7, 'fff');
print Sal2]; # imprime el tercer elemento: fff
print @a; # imprime: 957fff (todo junto)

Sobre las matrices debes advertir que:

e Cada uno de los elementos del array son variables de tipo escalar.

Los subindices de la matriz empiezan por 0 (como en el lenguaje C).

Tenemos dos formas de conocer el nimero de elementos del array:

@a = (7,8,9,10);
Sa = @a; # Sa vale 4
Sa = scalar (@a) ; # Sa vale 4

e La variable $a no tiene que ver nada con $a[0].

Es posible inicializar un array con una sintaxis especial:

Sa = (2..7); # S$a queda con (2,3,4,5,6,7);
$Sa = ('a'..'e'); # S$a queda con ('a','b','c','d','e")

Los subindices positivos acceden a los elementos por porden creciente y los
negativos por orden inverso

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 6
José Miguel Prellezo Gutiérrez Octubre 2002

@a ('a'..'e"); # sal[0] es 'a' Saf[4] es 'e!
@a = ('a'..'e'"); # Sal-1] es 'e! $a[-5] es 'a'

e Se puede obtener una parte de un array (subarray):

@a = ('a'..'e');
@b = @al[3, 0]; # @b = ('d', 'a');
@c = @al[2-5]; # es lo mismo que @al2,3,4,5] O

@al[2..5]

e Es posible colocar una lista de variables escalares a la izquierda del igual

(Sa, S$b) = @x # Sa queda con el valor de $x[0]
$b queda con el valor de $x[1]

e Para recorrer un array utilizamos el bucle foreach

foreach $valor (@eelArray) {
Este bucle recorre el array, y en cada iteracidn
deja en Svalor el contenido de la celda del array
que se estad visitando.

Hash (%)

Las variables tipo hash o array asociativo empiezan por el caracter %o. Se trata de un tipo
caracteristico de Perl, y consiste basicamente en un array en el cual se accede a sus
distintos elementos a través de una clave en lugar de por un indice.

Para crear un elemento de un hash se requiere una lista de dos valores, siendo el primer
elemento es la clave y el segundo es el valor asociado a dicha clave

%$almacen = ('Peras', 5, 'Manzanas',6 3);
print S$almacen{'Peras'}; # Imprime: 5
print $almacen{'Manzanas'}; # imprime: 3

Si la clave es un string sencillo (no compuesto de palabras separadas con espacios en
blanco) se pueden omitir las comillas. Por tanto, son equivalentes las instrucciones:

print $almacen{'Manzanas'};
print $almacen{Manzanas};

Existe otra sintaxis a la hora de inicializar un array asociativo que suele utilizarse
habitualmente por ser mas descriptiva que la anterior:
%$almacen = (Peras=>3, Manzanas=>5) ;

En cualquier momento se puede agregar un elemento a un hash. Si no existe, se crea y se
almacena el valor asignado:

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 7
José Miguel Prellezo Gutiérrez Octubre 2002

$almacen{Naranjas} = 9;

En un hash los elementos se accesan por claves y no se permiten claves duplicadas.

FUNCIONES PERL PARA EL MANEJO DE ARRAYS ASOCIATIVOS

e La funcién delete sirve para borrar un elemento

delete $almacen{Manzanas};

e La funcidn keys crea un array con las claves de un hash

@b = keys %almacen # @b queda con (‘'Peras’,
'Manzanas',
'Naranjas') ;

e La funcién values devuelve un array con los valores del hash

@v = values %almacen # @v queda con (5, 3, 9);

e La funcién exists prueba si existe la clave en el hash

$b = exists Salmacen{Peras}; # $b queda con 1
$c = exists Salmacen{Tomates}; # $c queda con ""

e Para recorrer un hash, utilizaremos foreach. Ejemplo:

foreach $k(keys %almacen)

{
J

print "key=$k val=Salmacen{sk} \n";

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 8
José Miguel Prellezo Gutiérrez Octubre 2002

IIT. OPERADORES Y CONTROL DEL FLUJO

Los valores son los datos que se almacenan en las variables.

Ndmeros

¢ Independientemente del tipo numérico (entero o real), Perl trata a ambos de la
misma forma, es decir como si los nimeros enteros fuesen de tipo punto flotante,
por lo que en la mayor parte de las maquinas tendremos una precision de 16 digitos
en aritmética entera.

e Se puede expresar un numero en base octal, precediéndolo del caracter “0”.
e Se puede expresar un numero en base hezadecimal, precediéndolo de los
caracteres “0x".

Sa
Sa

010; # Sa tiene el valor 8 decimal
0x10; # Sa tiene el valor 16 decimal

Strings

Los strings pueden escribirse con comillas dobles (), simples (*) o invertidas ().

e Cuando se usa comilla simple, la variable escalar toma el valor del string indicado
directamente, sin hacer ninguna operacion adicional.

e Cuando se usa doble comilla se pueden interpolar variables escalares y arrays;
interpolar significa intercalar: en el resultado final la variable se sustituye por su
valor. Por ejemplo:

Sa = 'pueblo!
print "hola $a'; # imprime: hola pueblo
print 'hola $a'; # imprime: hola $Sa
Cuando se requiere interpolar una variable entre letras, hay que utilizar las llaves

{}, p.e. como se coloca $a antes de una letra como "s

"abcSas"; # Interpola la variable $as (no existe)

"abcs${a}s" # Interpola correctamente $a
Entre las comillas dobles se pueden tambien poner caracteres especiales como salto
de linea (\n), tabulador (\t), backspace (\b), etc. Ejemplos:

print "aaa\n"; # Salta linea después de imprimir

print ‘'aaa\n'; # No salta, imprime: aaa\n
Entre las comillas dobles, cuando se quiere utilizar algin caracter que tienen
significado especial en Perl, (como $, ", \, etc.), hay que precederle por el caracter
de escape (\).

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 9
José Miguel Prellezo Gutiérrez Octubre 2002

$a = 1234;
print "valor=Sa\s"; # imprime: valor=1234S

Cuando se interpola un array, Perl separa los elementos del array por un espacio en

blanco
@a — (95, 7[nfffn)/'
print "val=e@a" ; # imprime: val=95 7 fff

El separador es realmente el valor de la variable escalar definida por Perl ($") y
puede ser reasignada, por ejemplo:

sto= ",

print "val=@a"; # imprime: val=95,7,fff

e Cuando se asigna un string encerrado con comillas invertidas, significa que dicho
String es en realidad un comando del sistema operativo que debe ejecutarse, y
cuya salida se almacenara en la variable escalar.

Sa = “dir *.exe”; # $a queda con la salida del comando
"dir *.exe"

En comillas invertidas se pueden interpolar variables.

Verdadero y falso

Como en C, cualquier expresion tiene un significado logico; p.e. las asignaciones tienen el
valor de lo asignado.

Sin embargo, no existe un tipo de datos booleano como en otros lenguajes. En su lugar,
sera considerado como verdadero todo aquello que no es falso, y los valores que se
consideran como falsos son:

1. Los strings "", "0" y el nUmero 0.

2. El valor "no definido" de una variable, esto es, cuando existe la variable pero no
tiene un valor asignado. La funcion defined se usa para averiguar si una variable
esta definida:

Sa = 5;
print "a definida" if(defined $Sa);
print "b no definida" if(!defined $b);

NOTA: La funcion undef no es lo contrario de defined. Lo que hace realmente es

devolver el argumento "no definido", elimina el bind entre la variable y el valor, el cual

desaparece si su contador de usuarios queda en cero.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 10
José Miguel Prellezo Gutiérrez Octubre 2002

Expresiones ldgicas

Una expresion logica es una expresion cuyo valor es verdadero o falso. Usualmente las
expresiones logicas se usan en condiciones.

if($a and $b) {
print "A y B son verdaderos";
}

if($a or $b)
print "A o B son verdaderos";
}

Existen también los operadores && y || como en C, que tienen mas prioridad que and y or.
Las expresiones logicas tiene otro uso muy interesante usandolas como una instruccion en

si misma:
Sa and Sb;
si $a es falso toda la expresidn anterior es falsa
por lo tanto no se evalGa el elemento $b. Si $Sa es
verdadero se tiene que evaluar S$b para conocer el
valor de la expresidn. Y eso aunque el valor de
la expresidn total no se utiliza para nada.
Sa and print "A es verdadero";
el print solo se hace si $a es verdadero; es
equivalente a: print "A es verdadero" if $a;
Sa or print "A es falso";
el print solo se hace si $a es falso; equivale a
print "A es falso" 1f(! $a);
o también a:
print "A es falso" unless($a);
Operadores

OPERADORES LOGICOS

e Operadores para comparar numeros (como en C)

Sa == $b and print "A igual a B";
Sa != $b and print "A distinto de B";
$a >= $b and print "A >= B";

e Operadores para comparar strings:

Sa eq $b and print "A igual a B";
$a ne $b and print "A distinto de B";
$a ge $b and print "A >= B";

Perl 5.0, un lenguaje multiuso Versién 1.6

José Miguel Prellezo Gutiérrez Octubre 2002

Pagina 11

El siguiente ejemplo muestra por qué se necesita distinguir una comparacién
numeérica de una comparacion de strings:

$a=5;

Sb=49;

$x = ($a gt $b) # $x queda 1 (verdadero)
$x = ($a > $b) # S$x queda "" (falso)

e Comparaciéon de numeros (starship operator)
SXx = Sa <=> S$b

Sx queda con -1 si $Sa < $b
Sx queda con 0 si $Sa == S$b
Sx queda con 1 si $Sa > S$b

e Comparacion de strings
Sx = $Sa cmp S$b
Sx queda con -1 si Sa 1t s$b
Sx queda con 0 si Sa eq $b
Sx queda con 1 si Sa gt $b

OPERADOR TERNIARIO

Es una abreviatura de las 3 partes de la estructura if:

@a > 5 ? print "a > 5": print "a no es > 5";
Es equivalente a:
if(a>5) {
print "a > 5";
}

else {
print "a no es > 5";

H H H H

Operadores de strings

e Repetir strings: con operador "x"

Sa = "y";
Sb = Sa x 5; # Sb queda con "yyyyy";
¢ Concatenar strings: con operador "."
Sa = "abc";
Sb = Sa . "def"; # $b queda con "abcdef"

Operador de rango

.." para generar listas
@a = llay-ll L. llbbll ,.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 12
José Miguel Prellezo Gutiérrez Octubre 2002

@a queda con (nayu, "az", "ba", ")

@a = 1..5;

@a queda con (1, 2, 3, 4, 5)

No deben mezclarse letras y nimeros, ni mayusculas y minusculas

Control del flujo

Disponemos de las mismas estructuras del control del flujo que en C, en algunos casos con

algln pequefio matiz.

BLOQUE IF

if(Scondicionl)

{

Entra aqui si la condicidn es cierta. Es obligatorio

poner las llaves aunque sdlo exista una instruccidn.

}

elsif (Scondicion2)

Esta parte del

veces como sea
else {

Parte final de

no lo hizo por

BLOQUE IF ABREVIADO

{

if es opcional. Se puede repetir tantas

necesario.

if por donde entrard a ejecutarse si

ninguna de los bloques anteriores

Con ayuda del operador ? podemos escribir en una linea las tres partes de la estructura if:

$maximo = ($x > Sy) ? $x : Sy;

Es equivalente a:

if(sx > $y) |

Smaximo = S$X;
}

else {

Smaximo = S$y;
}

BLOQUE UNLESS

Es exactamente lo contrario del if. Por ejemplo

unless ($condicion) {

Se puede leer como: “A menos que ...”"

}

Y seria equivalente a

Perl 5.0, un lenguaje multiuso
José Miguel Prellezo Gutiérrez

Versién 1.6
Octubre 2002

Pagina 13

if(! Scondicion) {
#

}

Al final del blogue unless se pueden anadir las sentencias elsif y un else final como en el
caso de la construccidn if, sin embargo no es habitual su uso.

BLOQUE WHILE

Mientras la condicion que acompafia al while sea cierta, se ejecuta el bloque de coédigo
asociado.

while($condicion) {

Ejecutard estas instrucciones mientras la condicidén sea cierta

BLOQUE UNTIL

Es exactamente lo contrario que el bucle while. Mientras la condiciéon que acompafia al
until sea falsa, se ejecuta el bloque de cddigo asociado.

until ($condicion) {

Ejecutard estas instrucciones mientras la condicidén sea falsa

Equivale a:

while(!S$Scondicion) {
#

BLOQUE DO

Las dos construcciones anteriores no sirven cuando al menos queremos que se ejecute una
vez el cédigo del bloque y chequee la condicion al final. Esto es precisamente lo que nos
permite el bucle do, que permite dos tipos de construccion:

do({
Ejecutard estas instrucciones al menos una vez.
Mientras la condicidn sea cierta seguira iterando

} while($condicion)

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 14
José Miguel Prellezo Gutiérrez Octubre 2002

Y la complementaria:

do({
Ejecutard estas instrucciones al menos una vez.
Mientras la condicidén sea falsa seguird iterando

} until($condicion)

BLOQUE FOR

Sirve para construir bloques en los que en cada iteracion se modifica una o varias
variables. Se pueden realizar construcciones complejas dentro de un for, pero su forma
mas comun es la siguiente:

for ($i=0; $i<10; $i++)
Ejecuta 10 veces las instrucciones que se pongan aqui.

En cada iteracidn la variable $i se incrementa

}

Si queremos un for descendente de 2 en 2, podemos hacer:
for ($i=10; $i>0; $i-=2) {
#

RUPTURA DE LOS BUCLES

A menudo resulta imprescindible modificar el comportamiento de un bucle bajo
determinadas circunstancias, para lo cual tenemos dos palabras reservadas:

¢ next

Continua ejecutando la siguiente iteracion del bucle. Es equivalente al continue de

C.
Imprime los numeros pares del 1 al 20.
for($i =1; $i<=20; Si++)
next if($i % 2);
#S1i el nGmero es par, el if es falso y sigue por aqui.
print $i, “\n”;
Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 15

José Miguel Prellezo Gutiérrez Octubre 2002

o last
Finaliza la ejecucién del bucle, y sigue en la primera instruccion que hay a
continuacion del mismo. Ejemplo:

$1=0;

while (1)

{
Si++;
#Cuando llega a 50, se finaliza el bucle al hacer last.
last if($1 == 50);

print $i, “\n”;

En numerosas ocasiones tenemos varios bucles anidados y cuando se cumple una
determinada condicidon en el bloque mas interno queremos salir de toda la estructura.

Podemos actuar de dos formas, que son:
1. Usar la palabra reservada goto. Los puristas de la programacion estructurada no
estaran muy conformes, pero es una posibilidad que tenemos disponible. Por

ejemplo:

for ($i=0;%$1<10;%1i++) {

...
for($3=0;$3<10;$j++) {
...
for ($k=0;$k<10;Sk++) {
print " ($i,sj,sk)\n";
Queremos salir si el producto de las variables es 12
goto SALIR if ($i*$j*Sk==12);
} }
}
Para las etiquetas se suelen usar letras mayuUsculas.
SALIR:

print "final\n";

2. Usar los bloques etiquetados. Esto es, ponemos una etiqueta en el bloque que
deseamos romper, y cuando se ejecute el last le indicaremos que bloque es el que
se termina. Podemos conseguir el mismo efecto que en el ejemplo anterior de la

siguiente forma:

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 16
José Miguel Prellezo Gutiérrez Octubre 2002

SALIR: for($i=0;$1i<10;%i++) {

...
for($3=0;%7<10;S$j++) {
...
for ($k=0;$k<10;Sk++) {
print " ($i,$3,S$k)\n";
Queremos salir si el producto de las variables es 12
last SALIR if ($i*s$sj*sk==12);
}
}

print "final\n";

SALIDA DEL PROGRAMA
Para finalizar en un punto concreto la ejecucion del programa y regresar al sistema
operativo, utilizaremos la sentencia:

exit $numero de error;

Como vemos, es posible indicar un nimero de error devuelto al sistema operativo.

Si ademas de finalizar, deseamos mostrar un mensaje de error y la linea concreta en que
se ha producido, utilizaremos:

die “Mensaje de error”;

EXCEPCIONES

Al igual que en otros lenguajes, es posible romper el flujo de ejecucién mediante unas
excepciones que seran tratadas de una forma adecuada. Esto se logra en Perl de una
forma un tanto rudimentaria, pero eficaz. Por ejemplo, consideremos el siguiente codigo:

while ($a=<STDIN>) {
chomp S$a;
die "No sirve este valor: $a" unless Sa;
print 100/$a;

Estd esperando a que usuario introduzca valores por el teclado y pulse Enter. Si no pone
nada o escribe 0, el programa finaliza con un mensaje de error (instruccidon die).

Podemos utilizar una construccion diferente:

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 17
José Miguel Prellezo Gutiérrez Octubre 2002

while ($a=<STDIN>) {
eval {
chomp $a;
die "No sirve este valor: $a" unless Sa;
print 100/S$a;

if(s@)

print "Se ha producido un error: S$@";

}

En este caso hemos introducido un bloque eval. Este bloque simplemente se limita a
ejecutar una tras otra las instrucciones que contiene, pero si se ejecuta una sentencia die,
el resultado no es la salida inmediata del programa, sino del bloque. Aqui entra en juego la
variable especial de Perl $@, la cual contiene el valor del ultimo error provocado en el
bloque eval. Si no hubo error, la variable $@ esta indefinida y no entrara por el if. Pero si
lo hubo, en este caso concreto la variable $@ contendra el texto que se pasé como
parametro a la instruccién die, y como resultado final se imprimirad el mensaje especificado
en el bloque if.

Puesto que el die no provoca la finalizacién del programa, en este caso concreto después
de imprimir el mensaje de error, se continla dentro del bloque while a la espera del
siguiente valor.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 18
José Miguel Prellezo Gutiérrez Octubre 2002

IV. FUNCIONES

Definicion y uso

En Perl se puede definir una funcién es cualquier parte, aunque lo comun es hacerlo al
principio del fichero. La funcidn solo se ejecuta cuando se llama expresamente. La funcion
se define con la palabra sub. Ejemplo:
sub funcion 1 {
Sa shift;
shift asume el array @

@ contiene los argumentos

que se dan al llamar la funcidn
Sy = 2 * 3a;
return (Sy) ;
devuelve ese valor al que llamé la funcidn

La funcién se llama simplemente escribiendo su nombrel!!:

Sx = 5;
Sz

funcion 1(s$x); # pasa $x como UGnico elemento de @
por tanto, $z queda con 10.

Una funcién que no tiene un return explicito retorna, no obstante, el valor de la dltima
expresion que se ha ejecutado; por tanto, la funcién funcion_1 anterior no necesita la
sentencia return.

Cuanto se llama a una funcion, no es obligatorio recoger el valor devuelto por ésta.

Los parametros de una funcién se pasan siempre por referencia; por consiguiente, si se
modifica $_[1] se estd cambiando el segundo parametro usado en la expresiéon que llama a
la funcidn. Puede ser peligroso si no se maneja con cautela.
sub funcion 2 {
$ [0]1=7;

Modifica el primer parametro en el llamador

}
sa = 5;
funcion 2 ($a);

11 Sj la funcidon estad definida en un lugar del fichero posterior al sitio desde donde se la
llama, es necesario anteponer el simbolo &

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 19
José Miguel Prellezo Gutiérrez Octubre 2002

print $Sa; # imprime: 7

Bloques

Un bloque consiste en un conjunto de expresiones dentro de llaves {}. Las funciones son
bloques, pero también puede haber bloques sin la palabra sub. Una de las razones para
tener bloques es la de disponer de variables locales que desaparecen cuando el bloque

termina.

Sa=5; # variable global gue nunca muere

Sb=7; # variable global gue nunca muere
my ($c)= 3;

"my" crea una variable local que

solo existe en este bloque
funcion 3();

Sc no es visible dentro de funcion 3

J

print $Sa; # imprime: 5
print S$b; # imprime: 7
print Sc; # No imprime nada: $c no existe

sub funcion 3 {

print Sa; # imprime: 5
print Sb; # dimprime: 7
print S$c; # No imprime nada: $c no existe

Cuando definimos una variable por regla general tiene un ambito global al script, a no ser
que utilicemos las funciones my o local para limitar su alcance.

e La funcién my es la mas utilizada para definir variables locales. Las variables
declaradas con my son visibles sdlo dentro del bloque, y no desde fuera. Tampoco
son visibles a las funciones que se llaman desde el bloque.

e La funcion local se usa para definir otras variables locales, pero a diferencia de las
anteriores, si son visibles a las funciones que se llamen desde el bloque.

Sa = 5; # variable global gque nunca muere

local (sa)=3;
El valor 5 se guarda temporalmente

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 20
José Miguel Prellezo Gutiérrez Octubre 2002

para reponerlo cuando el blogue termine

local (Sb)=7;

Como $b no existia, al salir del bloque

no va a existir
funcion 4();

En funcion 4() se puede usar $Sa y $b
}
print Sa; # imprime: 5
print S$b; # No imprime nada: $b no existe

sub funcion 4 {
print S$Sa; # Imprime: 3
print S$b; # Imprime: 7

Funciones integradas en Perl

Ademas de las que ya hemos visto, podemos considerar como mas importantes las

siguientes:

MANEJO DE STRINGS

e chop $a;

Borra el Ultimo caracter del string contenido en $a. Resulta Gtil para quitar el
caracter “\n” al final de una linea que se lee de un archivo de texto. Ejemplo:

Sa = "abcdef";

chop ($sa) ; # Sa queda con "abcde";

e length $a;

Devuelve la longitud del string contenido en $a. Ejemplo:

Sa = "abcdf";
print length($a); # imprime: 5

e index $a, $x;

Devuelve la posicién del string $x en el string $a. Se asume que los indices
comienzan en cero. Ejemplo:
Sa = "abcdef";
$b = index ($a, "cd");
print S$b;
Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 21

José Miguel Prellezo Gutiérrez Octubre 2002

e uc Sa;

Devuelve un string con los caracteres de $a en mayusculas, sin modificar $a.

e lc Sa;

Devuelve un string con los caracteres de $a en mindsculas, sin modificar $a.

e substr $a, $pos, $len;

Sirve para extraer un string a partir de otro. El primer parametro es el string de
partida, el segundo parametro es la posicion de comienzo, y el tercer parametro es
la longitud del substring a extraer. Ejemplo:

Sa = "abcdef";
print substr (Sa, 2, 3); # Imprime: cde

Se puede usar substr al lado izquierdo de una asignacion:

Sa = "abcdef";
substr($a, 2, 3) = "xy"; # cambia "cde" por "xy"
print Sa; # imprime: abxyf

MANEJO DE ARRAYS
En estas funciones, si no se especifica un array concreto, se utiliza el array por defecto.
¢ join expresion, array
Convierte un array en un escalar concatenando todos sus elementos con el
elemento indicado en expresion.

@a = ('a'..'e');
$a = join ":", @a # $a queda con "a:b:c:d:e";

e split /regexp/, expresion;

Convierte un escalar en un array; resulta muy util para separar campos:

Sa = 'a:b:c:d:e';

@a = split /:/, sa

@a queda con ('a', 'b', 'c', 'd', 'e'")
el primer parametro es una expresion regular, que mas adelante veremos en qué
consiste.

e shift array;

Devuelve el primer elemento del array reduciendo en uno el tamafio del mismo.

@a = ('a'..'e'");

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 22
José Miguel Prellezo Gutiérrez Octubre 2002

Sb = shift @a; # Sb queda con 'a'
@a queda con ('b'..'e');

e unshift array, lista;

Aflade un elemento al princio del array (a la izquierda). La lista puede ser un
escalar o una lista de valores.

@a = (“b" , “C") ;
unshift @a, 'a';
@a vale (\\an , wp , “C") ;

® poOp array;
Devuelve el Ultimo elemento y lo quita del array
@a = ('a'..'e'");
Sb = pop @a; # $b queda con 'e'
@a queda con ('a'..'d');

e push array, lista;

Afade un elemento al final del array

push @a, 'e'; # agrega 'e' al final del array

e splice array, offset, longitud;

Permite extraer un subarray y modificar a la vez la matriz original.
@a = ('a'..'e'");
@b = splice(@a, 1, 2);
@b queda con 2 elementos de @a: $alll y $al2];
('b', 'c")
@a queda sin esos 2 elementos:
(ta', 'd', 'e');

e map expresion, @a;

Devuelve un array después de evaluar la expresion para cada elemento del array
que se le pasa como parametro (@a).

@a = ('a'..'f");
@b = map(uc(), @a);
print "@b"; # imprime: A B C D E F

Otro ejemplo:

Calculo de las 10 primeras potencias de 2
sub Potencia2 { return (shift)**2;}

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 23
José Miguel Prellezo Gutiérrez Octubre 2002

@p = map Potencia2($), (1..10);
print “ep”;

grep expresion, @a;

Devuelve un array que contiene los elementos de @a donde la expresién es

verdadera. En este ejemplo, @b se queda con los que empiecen por "b":

@a = ("al", na2n, "bl", nb2n, "Cl", "C2") ;
@b = grep /"b/, @a;
print "e@b"; # imprime: bl b2

sort BLOQUE @array;

Devuelve un array ordenado. El array que se pasa a la funcidon no sufre ninguna
modificacion. Si se omite el BLOQUE, se obtiene un orden ascendente utilizando una
comparaciéon en modo texto. Ejemplos:

@a = (3,2,7,8,1,4,6,9,5,10);
@b = sort @a;
@c = sort {$a<=>$b} @a;

@d = sort {$b<=>$%a} @a;

print "@b";
print "@c";
print "ed";

Imprime: 1 10 2 3 4 56 7 8 9
Imprime: 1 2 3 4 5 6 7 8 9 10
Imprime: 10 9 8 76 5 4 3 2 1

® reverse @array

Devuelve un array invertido. Ejemplo:

@a = (1, 4,

5, 7);

@c = reverse @b; # @c vale (7, 5, 4, 1)

FUNCIONES NUMERICAS

e abs(Sx)
e cos(Sx)
* exp($x)
e hex(Sx)
e Iint (Sx)
* log($x)
e rand(Sx)

e sin(Sx)
e sqgrt($x)
e srand(sx)

Valor absoluto

Coseno en radianes

Exponencial (e”)

Transforma un numero Hexadecimal a decimal
Devuelve la parte entera del numero
Logaritmo natural (base e)

Devuelve un numero real en el intervalo [0,x)
Seno en radianes

Raiz cuadrada

Inicializa el generador de niumeros aleatorios

Perl 5.0, un lenguaje multiuso
José Miguel Prellezo Gutiérrez

Versién 1.6
Octubre 2002

Pagina 24

Referencias

Las referencias son escalares que apuntan al valor de otra variable; por
modificando una de ellas, tiene inmediato reflejo en las demas. Una referencia puede
apuntar a una variable de cualquier tipo (escalar, array o hash).

s$ra = \sa;
Srb = \@b;
Src = \%c;
$rx = \$rb;

referencia
referencia
referencia
referencia

Q0 9 W

escalar
array
hash
referencia

tanto,

Tambien podemos crear referencias a funcidn y referencias a objetos. Las referencias mas
interesantes son las referencias a los arrays y a los hashes.

Veamos otra forma de crear una referencias a un array (fijarse en el corchete):

Sref 1 = [

'el', 'e2', 'e3']l;
Los corchetes sirven para crear un array andénimo, al
cual vamos a acceder mediante una referencia ($ref 1).

Para imprimir el primer elemento, utilizaremos:

print sref

1->[0];

Otra forma de crear una referencia a hash (fijarse en las llaves)

$ref 2 = { COCHES => 100, MOTOS => 23 };
Las llaves sirven para crear un hash andénimo, al

cual vamos a acceder mediante una referencia ($ref 2).
Para imprimir el primer elemento, utilizaremos:

print sref

2->{COCHES};

Cuando una referencia es dereferenciada se obtiene el dato real

$ra = \$a;
Srb = \@b;
Src = \%c;
$rx = \$rb;
${sra}
@{$rb}
@{$ra}
%{$rc}

referencia
referencia
referencia
referencia

a

a
a
a

Nos da el wvalor
Nos da el wvalor
Error, porgque $ra apunta a un escalar
Nos da el wvalor de %c

escalar
array
hash
referencia

de Sa
de @a

Perl 5.0, un lenguaje multiuso
José Miguel Prellezo Gutiérrez

Versién 1.6

Octubre 2002

Pagina 25

FUNCIONES UTILES CON REFERENCIAS

Veamos algunas funciones que resultan de utilidad cuando estamos trabajando

referencias:

con

o ref
La funcion ref devuelve un string que indica el tipo del referenciado. Ejemplo:

Sra = \S%a; # referencia a escalar
Srb = \@b; # referencia a arreglo
Src = \%c; # referencia a hash
Srx = \Srb; # referencia a referencia
Srf = \&f; # referencia a funciédn
ref(Sra); # devuelve "SCALAR"
ref(Srb); # devuelve "ARRAY"
ref(Src); # devuelve "HASH"
ref(Srx); # devuelve "REF”
ref(srf); # devuelve "CODE"

Si el operando de ref no es una referencia, devuelve falso.

e Dbless

Esta funcidén cambia el tipo de una referencia a otro tipo. Es muy utilizado para crear
clases en programacion orientada a objetos, como veremos posteriormente.

$rc = { year=>1995, marca=>'renault', modelo=>’clio’ };
$a = ref S$rc; # $a vale "HASH"
bless Src, "VEHICULO";
Sb = ref (Src);
Sb vale "VEHICULO"; esto tiene mas

sentido cuando se hable de POO.

ARRAYS N-DIMENSIONALES

Uno de los problemas que se achaca a Perl es su falta de soporte directo para dar cabida a
arrays de mas de una dimension. Para solucionar esto, se utilizan las referencias a los
arrays.

La idea consiste en guardar en un array las referencias a otros arrays. Esto es posible
porque un array sélo puede almacenar escalares, y una referencia es también un escalar.

@exl = (5, 6, 7);
@x2 = (2, 3, 4);
@x = (\exl, \@x2);

@x es un array de 2 dimensiones
Otra forma de escibir @x seria:

Versién 1.6
Octubre 2002

Perl 5.0, un lenguaje multiuso Pagina 26

José Miguel Prellezo Gutiérrez

#@X: ([516l7]l

print $x[0]->[0]
print S$x[1]->[2]

[2,3,4]);

Imprime: 5
Imprime: 4

Sx[0]->[0] se puede escribir $x[0] [0]
Sx[1]->[2] se puede escribir $x[1][2]
Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 27

José Miguel Prellezo Gutiérrez

Octubre 2002

V. FICHEROS

Uno de los puntos fuentes de Perl es su facilidad a la hora de manejar ficheros.

Abrir ficheros

Utilizamos la funcion open:
open f1l, "c:/autoexec.bat";

De esta forma se abre un archivo de lectura. El fichero se maneja con el descriptor f1

Otras formas de open:

open fl, "<c:/autoexec.bat"; # abrir para leer (es lo mismo
gue no poner nada)
open f1l, ">c:/autocexec.bat"; # abrir para escribir
open f1l, "s>>c:/autoexec.bat"; # abrir para agregar
open f1l, "+<c:/autocexec.bat"; # abrir para leer y escribir
Lectura

En estos ficheros, cada linea termina en "\n". El operador diamante "<>" lee una linea del
archivo cuyo descriptor le pasamos como parametro.
open f1, "c:\autoexec.bat";
while(<£f1>) {
print;
Aqui <f1> llena $_ con una linea del archivo, que posteriormente se imprime con print; en
Perl casi todas las funciones asumen $_ cuando no se pone nada explicitamente.

En realidad <f1> en contexto escalar (el resultado se asigna a un escalar) lee una sdla
linea, y en contexto lista (el resultado se pasa a un array) lee todo el archivo,
introduciendo en cada celda del array una linea del fichero.
open f1, "c:\autoexec.bat";
@a = <fl>; # @a tiene todo el archivo
cada elemento de @a es una linea del
archivo

Escritura

Se utiliza la funcion print, y se le puede pasar un escalar o una lista. Se necesita un
descriptor de fichero (previamente abierto con open)

print descriptor $dato;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 28
José Miguel Prellezo Gutiérrez Octubre 2002

print descriptor @lista;

No hay coma entre descriptor y $dato 6 @lista. Si no hay descriptor se asume STDOUT vy
si no se pone nada para imprimir, se asume la variable por defecto $__

También se puede utilizar la funcion printf, que permite formatear la salida de forma
similar a su homadloga en C. Por ejemplo:

printf “%5s %4d %3.2f\n”, “hola”, 12, 3.1416;
Imprime: hola 12 3.14

Cerrar el fichero

Se utiliza la funcion close. Para el ejemplo anterior:
close f1;

Se pueden cerrar varios ficheros a la vez, separando cada descriptor por una coma.

Lectura/escritura binaria

Cuando el fichero es binario, carece de sentido hacer una lectura de lineas. En éste caso se
recurre a una lectura de bloques de informacién, cuyo tamafio (en bytes) nosotros
podemos definir.

La funcion utilizada en este caso es:
e sysread FICHERO, S$buffer, $longitud

Esta funcién lee del fichero especificado, el nimero de bytes dado en $longitud, y deja
dicha informacion el la variable escalar $buffer. La funcion devuelve el nimero de bytes
que efectivamente se han leido.

Para la escritura:
e syswrite FICHERO, $buffer, $longitud

Esta funcidn escribe en el fichero especificado, el nimero de bytes dado en $longitud, vy
toma los datos de la variable escalar $buffer. La funcion devuelve el nimero de bytes que
efectivamente se han escrito, o undef si ocurrié algun error. Si no se proporciona
$longitud, se intenta escribir el contenido completo de $buffer.

Funciones para el manejo de ficheros

Funcioén Significado

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 29
José Miguel Prellezo Gutiérrez Octubre 2002

Crea un directorio segun se especifica en $path.

mkdir S$path . ; . .
Si hay algun fallo, se actualiza la variable $!

rename $oldName, S$newName [Cambia el nombre de un fichero

Borra un directorio si esta vacio. Si hay algun

rmdir S$path) .
fallo, se actualiza la variable $!

Devuelve un array de 13 elementos con

stat $fichero . , .)
informacion relativa al fichero

unlink efiles Borra una lista de ficheros.

Operadores para testear ficheros

Existen una serie de operadores que nos permiten saber si un fichero existe, si tiene
longitud 0, etc:
e Comprobar si el fichero existe:

if (-e $fichero) {
Entra aqui si el fichero existe
}

e Comprobar si el fichero se puede leer

if (-r $fichero) {
Entra aqui si el fichero se puede leer
}

e Comprobar si el fichero se puede escribir

if (-w $fichero) {
Entra aqui si el fichero se puede escribir
}

e El fichero existe y tiene un tamafo superior a 0 bytes. Devuelve el tamafo del
fichero
Ssize = (-s Sfichero) ;
e Comprobar si se trata de un directorio

if (-d $fichero) {
Entra aqui si se trata de un directorio

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 30
José Miguel Prellezo Gutiérrez Octubre 2002

VI. EXPRESIONES REGULARES

Una expresion regular (regex) es una forma general de describir un patréon de caracteres
gue queremos buscar en un string. Este patrén nos permite describir practicamente
cualquier ocurrencia de una cadena. Generalmente, el patron se escribe entre barras de
dividir (//). Su uso principal es para buscar y también para sustituir.

Operadores
Perl define dos operadores especiales (=~ y !~) que permiten testear si un patron aparece
dentro de un String:

Sresultado = Svar =~ /abc/;

El valor que toma $resultado puede ser:

e True, si se encuentra el patron en el String
e False, si no se encuentra

En el ejemplo, se busca por el String que hay almacenado en $var para ver si se
encuentra el string “abc”. Si es asi, $resultado tendra un valor true.

El operador !~ es justo la negacién de =~
Sresult = $var !~ /abc/;
Si $var contiene el valor “abc”, devuelve false.

Los operadores =~ y !~ tienen mayor preferencia que los de multiplicar y dividir, pero
menor que la exponenciacion (**) .

Caracteres especiales en patrones

Perl da soporte a un amplio conjunto de carateres con un significado especial dentro de
una regexp, los cuales suelen utilizarse a menudo

EL CARACTER +
El simbolo + significa "una o mas ocurrencias del caracter precedente". Por ejemplo, la
regexp /de+f/ devuelve true con los siguientes strings:

def, deef, deeef, deeeeececef
Los patrones que contienen el caracter +, intentan abarcar el mayor nimero de caracteres
posible. Por tanto, la regexp /ab+/ sobre el string “abbc”, considera “abb” y no solamente
“ab”.
Podemos utilizar el simbolo + para separar palabras por cualquier nimero de espacios. Por
ejemplo, suponer el string:

Slinea = “Esto es un String”;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 31
José Miguel Prellezo Gutiérrez Octubre 2002

Si utilizamos:
@palabras = split (/ /, $linea);
Obtenemos un array con el siguiente contenido:
@palabras = (“Esto”, “es”, “’, “un”, “”, “, “String”);
Podemos corregir esta situacion haciendo:
@palabras = split (/ +/, $linea);
Y en este caso,

@palabras = (“Esto”, “es”, “un”, “String”);
Los CARACTERES []

Los corchetes sirven para definir patrones que ofrecen alternativas. Por ejemplo, la
siguiente regexp sirve para buscar def o dEf:

/d[eE] £/
Se pueden especificar tantas alternatives como se desee:

/al[0123456789]c/

Esta regexp busca la letra “a”, después un digito seguido por una “c”. Se pueden combinar
los corchetes con el simbolo +, por ejemplo:

/d[eE]l+£f/
Esto nos permite hacer match en los siguientes strings:
def, dEf, deef, dEef, dEEEeeeEef

Cuando el caracter *~ aparece en la primera posicion depués de [, indica que el patron debe
hacer match de cualquier caracter excepto los que se indican entre corchetes. Por ejemplo,
el patrén

/d["eE] £/
Hace match si:

El primer caracter es una “d”.

El segundo caracter es cualquier cosa excepto la “e” o la “E".

El Gltimo caracter es una “f”.

LoS CARACTERES * ? {}

Su funcionamiento es similar al del simbolo +, con la Unica diferencia de la multiplicidad de
la busqueda realizada.

El caracter * busca cero o mas ocurrencias del caracter precedente. Por ejemplo, la regexp
/de*f/
Hace match sobre los strings

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 32
José Miguel Prellezo Gutiérrez Octubre 2002

df, def, deef, deeeeeef

El caracter » busca cero o una ocurrencia del caracter precedente. Por ejemplo, la regexp
/de?f/

Hace match sobre
df, def

Sin embargo, no lo hace sobre “deef”, porque la “e” aparece dos veces.

Perl nos permite especificar el niamero de ocurrencias de un patron, para lo cual

w o,

utilizaremos las llaves {}. Entre las llaves especificamos dos numeros separados por “,”; el
primero es el nimero de veces minima que debe aparecer, y el segundo el nimero de
veces maxima. Por ejemplo,

/de{1,3}£/
Hace match de una “d”, seguido de una, dos o tres ocurrencias de la “e” y finalmente una
“f”, Para especificar un numero exacto de ocurrencias, se pone un Unico niumero entre las
llaves. Ejemplo:

/de{3}£/
Este poatrdn solo hace match sobre el string “deeef”.

Para especificar un minimo de ocurrencias, dejamos en blanco el sequndo numero. Por
ejemplo:
/de{3,}£/
Esta regexp busca una “d”, seguida de al menos 3 “e” y finalmente una “f".
Similarmente, para esecificar un nimero de ocurrencias maximo pero no minimo hacemos:
/de{0,3}£f/
Este ejemplo hace martch de una “d”, sequido de no mas de 3 “e” y una “f".

EL CARACTER .

El punto (.) sirve para hacer match de cualquier caracter excepto el de retorno de carro.
Por ejemplo, la regexp

/d.f/
Busca una “d”, seguido de cualquier caracter (excepto \n) y finalmente una “f”.

El caracter (.) se usa frecuentemente en combinacién con el *. Por ejemplo, la siguiente
regexp hace match de cualquier string que contenga en caracter “d” antes de la “f":

/d.*£/

EL CARACTER |

El caracter especial | nos permite especificar dos o mas alternativas. Por ejemplo,
/def |ghi/

Busca tanto “def” como “ghi”.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 33
José Miguel Prellezo Gutiérrez Octubre 2002

Otro ejemplo:
/la-z]+]| [0-91+/
Hace match de una o mas letras minusculas o de uno o mas digitos.

SECUENCIAS DE ESCAPE

Si deseamos incluir en nuestra regexp un caracter especial de los vistos hasta ahora, o de
los que mas adelante seran mostrados, hay que ponerle precedido de la barra invertida
(backslash) “\" Por ejemplo, para buscar si un string tiene uno o mas asteriscos, haremos:

/*+/
Para incluir un backslash en un patron, hay que poner dos backslashes:
/\N\+/
Otra posibilidad es encerrar los caracteres especiales entre los comandos \Q y \E. Por
ejemplo, la regexp
/\Q"ab*\E/
busca cualquier ocurrencia del string “*ab*”, mientras que
/\Q"ab\E*/
busca el string “~a” seguido de cero o mas ocurrencias del caracter “b”

HACER MATCH DE LETRAS 0 NUMEROS
El siguiente patrén sirve para buscar un digito
/01234567891 /
Otra forma de escribir lo mismo es lo siguiente:
/[0-91/
Similarmente, el rango [a-z] busca cualquier letra mindscula, y el rango [aA-2] hace
match sobre cualquier letra mayuscula. Por ejemplo, la regexp

/[A-Z] [A-2]/
busca dos letras mayusculas consecutivas
Para hacer match de cualquier letra mayuscula o mindscula o de un digito, utilizaremos:
/[0-9a-zA-Z]/

LoSs ANCHORS * &

Sirven para asegurar que el patron se busca solamente al comienzo o al final del string.
Por ejemplo, la regexp
/" def/
Busca “def” sélo si son los tres primeros caracteres en el String. Similarmente, el patrén
/defs/

Hace match de “def” solo si son los tres Ultimos caracteres en el string. Se pueden
combinar ambos operadores para hacer match del string completo, por ejemplo

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 34
José Miguel Prellezo Gutiérrez Octubre 2002

/" defs/
Es cierto si y solo si el string es “def”.

Las secuencias de escape \2 y \Z son equivalentes a * y $, respectivamente

Los ANCHORS DE PALABRAS

Los anchors, \b y \B, especifican si un patron debe coincidir con un limite de una palabra o
debe estar dentro de la misma. (Un limite de una palabra es el comienzo o el final de la
misma). Se consideran como caracteres que pueden formar una palabra las letras, los
digitos y el caracter subrayado (_). Los demas se toman como separadores de palabras.

El cddigo \b especifica que el patrén debe estar en el limite de la palabra. Por ejemplo, la
regexp
/\bdef/
Hace match solo si “def” estd en el comienzo de la palabra. Por tanto, son validos tanto
“def” como “defghi”, pero “abcdef” no lo es.
También se puede emplear \b para indicar el final de una palabra. Por ejemplo,
/def\b/
Hace match sobre “def” y “abcdef”, pero no sobre “defghi”. Finalmente, la regexp
/\bdef\b/
Busca Unicamente la ocurrencia de la palabra “def”.
El codigo \B es el opuesto de \b. \B hace match solo si el patrdn estad contenido en una
palabra. Por ejemplo, la regexp
/\Bdef/
Hace match sobre “abcdef”, pero no sobre “def”.

Sustitucion de variables en patrones
Se puede utilizar el valor de una variable escalar dentro de una regexp. Por ejemplo, el
siguiente codigo divide el contenido de $1inea en palabras:

Spatron = "[\\t 1+";
@palabras = split(/Spatron/, S$linea) ;

Rangos de caracteres

Existen ciertos rangos de caracteres que aparecen frecuentemente en Perl, y para los que
existe definida una secuencia de escape. Por ejemplo,

/[0-91/
Es equivalente a

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 35
José Miguel Prellezo Gutiérrez Octubre 2002

/\d/
En la siguiente tabla se listan las secuencias de escape para rangos de caracteres mas
utilizadas:

Secuencia de escape |Descripcion Rango

\d Cualquier digito [0-9]

\D Cualquier caracter que no sea un|["0-9]
digito

\w Cualquier caracter de palabras [_0-9a-zA-7Z]

\W Negacion del anterior [* 0-9a-zA-Z]

\s Espacio en blanco, tabulador,|[\r\t\n\f]
retorno de carro

\S Negacion del anterior [* \r\t\n\f]

Reuso de porciones de patrones

Suponer que deseamos hacer match de lo siguiente:
e Uno o mas digitos o letras minusculas.
e Seguido de dos puntos o punto y coma.
e Seguido de otro grupo de uno o mas digitos o letras minusculas.

e Seguido de dos puntos o punto y coma.
e Y otro grupo de uno o mas digitos o letras minusculas.

Una forma de hacer esto seria la siguiente:
/I\da-zl+[:;]1[\da-z]l+[:;][\da-z]+/
Sin embargo, Perl proporciona una forma mas facil de especificar patrones repetitivos, y
consiste en encerrar la parte que deseemos entre paréntesis:
([\da-z]+)
Perl guarda la sequencia que hemos puesto entre paréntesis en memoria, y nos podemos

referirnos a ellas utilizando la sintaxis \num, don de num es un numero entero que
representa el orden (comenzando en 1) del patrén.

Asi, el patron anterior queda de la siguiente forma:
/([\da-z]1+]1) [:;1\10[:;1\1/

También se puede almacenar el [:;]. quedando
/([\da-z]+) ([:;1)\1\2\1/

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 36
José Miguel Prellezo Gutiérrez Octubre 2002

Extraer substrings de una regexp

Una vez fuera de la expression, podemos extraer las partes que nos interesan, para lo cual
Perl proporciona una serie de variables en las cuales almacena los valores que coinciden
con las expresiones de la regexp encerradas entre paréntesis.
Por ejemplo,

$string = "Un string con un nGmero: 25.11.";

$string =~ /-2 (\d+)\.?(\d+)/;

$integer part = $1;

Sdecimal part = $2;

Los valores $1, $2, etc. se borran cuando se ejecuta otra regexp. Existe otra variable
especial, $& que contiene el match completo. Podemos hacer, por tanto:

$string = "Un string con un nGmero: 25.11.";
Sstring =~ /-2 (\d+)\.? (\d+)/;
Snumber = $&;

Precedencia de los caracteres especiales
Perl define reglas de precedencia para determinar el orden de ejecucidén. Por ejemplo, la
regexp

/x|y+/

Hace match de o bien “x” o bien una o mas ocurrencias de y, ya que el operador + es mas
prioritario que el operador |.

La precedencias se resumen en la siguiente tabla, de mayor a menor

Caracter Descripciéon

() Memoria de match

+ * 2 {} NUmero de ocurrencias

*$ \b \B Anchors

| Alternativas

Especificar un delimitador de patrén
Podemos determinar que el separador de regexp sea un caracter diferente a la barra de
dividir.

/de*f/

Si deseamos utilizar la exclamacién, podemos hacer

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 37
José Miguel Prellezo Gutiérrez Octubre 2002

m!de*f!
De esta forma se minimiza el efecto “diente de sierra” que surje al combinar las barras / y

\.

Opciones de match

Podemos especificar unas opciones adicionales para determinar como se va a realizar la
blusqueda del patron en el string. Se resumen en la siguiente tabla.

Opcion |Descripcion
g Match todas las posibles ocurrencias
i Insensible a mayusculas y minusculas
m Trata un string con multiples lineas
s Trata un string como una Unica linea
x Ignora los espacios en blanco en la regexp

OPERADOR G
El operador “g” dice a Perl que haga match sobre todas las posibles ocurrencias en el
String. Por ejemplo:

Sstr = “patata”;

$str =~ /.a/g;
Hace match de “pa”, “ta” y “ta”. Si asignamos el resultado a un array, obtenemos todos los
match que se han realizado. Por tanto,

@matches = $str =~ /.a/g;
Hace que @matches contenga:

("pa"/ "ta", "ta")

OPERADOR I

La opcion “i” nos habilita para hacer blusquedas case-insensitive. Por ejemplo, el siguiente
patrén hace match de “de”, “dE”, “De”, “DE".

/de/1i

OPERADOR M

Esta opcidn le dice al intérprete de Perl que el String contiene multiples lineas de texto.
Con este operador, si se pone el caracter especial *, se busca bien al principio del string o
al principio de cada linea. Por ejemplo,

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 38
José Miguel Prellezo Gutiérrez Octubre 2002

/7 Un/m
Hace match en
Este patron tiene\nUn par de lineas

Igualmente, el caracter $ busca al final del string y al final de cada linea.

OPCION S

Hace que el string sea tratado como una Unica linea de texto, y obliga a que el caracter (.)
incluya el caracter de retorno de carro.

OPERADOR X

Si la regexp es muy compleja, podemos decir a Perl que ignore los espacios en blanco que
pongamos en ella con el objeto de clarificar su contenido. Por ejemplo,

/\a{2} ([\wl)\d{2}\1\da{2}/
Es equivalente a:

/\a{2} ([\wl) \d{2} \1 \da{2}/x

Si se necesita un espacio en blanco, se puede hacer escape con la barra \.

El operador de sustitucion

Perl permite reemplazar una parte de un string por otra, apoyandose en las expresiones
regulares. La sintaxis es la siguiente:

s/pattern/replacement/

El intérprete de Perlbusca por el patron especificado, y si lo encuentra lo reeemplaza por lo
que hayamos especificado en la segunda parte del operador. Por ejemplo:

Sstring = "abcl23def';
$string =~ s/123/456/;

Aqui, 123 es reeemplazado por 456, por lo que $string vale ahora “abc456def”.
Podemos utilizar expresiones como las vistas anteriormente, p.e.
s/ [abcl+/0/
Busca una secuencia consistente en una o mas ocurrencias de las letras a, b, y ¢ (en

cualquier orden) y reemplaza dicha secuencio por el valor “0”. Si lo que queremos es
borrarla, en lugar de reeemplazarla, hariamos:

s/abc//

VARIABLES

En la parte de reemplazar, se pueden utilizar variables que se refiere a la parte del string
sobre la que se ha hecho match. Por ejemplo:

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 39
José Miguel Prellezo Gutiérrez Octubre 2002

s/ (\d+), (\d+) /$2,$1/
Esta regexp busca la ocurrencia de uno o mas digitos. Al estar encerrado entre paréntesis,
se almacena en la variable escalar $1 y $2, que se pueden utilizar en la parte de
reemplazado. Podemos hacer los siguiente:

Snumeros = “123,456";
$numeros =~ s/ (\d+), (\d+)/$2,81/;

Ahora $numeros vale “456,123";

Para la sustitucion se pueden emplear los mismos operadores que vimos con anterioridad,
mas el operador “e”.

OPERADOR E
La opcidn “e” trata el string de reemplazdo como una expression que debe ejecutar. Por
ejemplo, consideremos lo siguiente:

Sstring
Sstring

"F'12"i
~ s/ (\d+) /$1*2/e;

M\ /4

La segunda parte de la expression de sustitucidén se ejecuta al establecer la opcion “e”, por
tanto, la variable $string queda finalmente con “F-24".

El operador de traslacion
Existe una alternativa para sustituir un grupo de caracteres por otro: el operador tr. Tiene
la siguiente sintaxis:

tr/stringl/string2/

Aqui, stringl contiene una lista de caracteres a ser reemplazados, y string2 contiene los
caracteres que los sustituyen. El primer caracter en stringl es reemplazado por el
primero en string2, y asi sucesivamente. Ejemplo:

Sstring = "abcdefghicba";
$string =~ tr/abc/def/;

Y hace lo siguiente:
e Todas las ocurrencias de “a” se cambian por “d".
e Todas las ocurrencias de “b” se cambian por “e”.
e Todas las ocurrencias de “c” se cambian por “f”.

Al final, $string tiene el valor “"defdefghifed”.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 40
José Miguel Prellezo Gutiérrez Octubre 2002

VII. VARIABLES ESPECIALES

Perl tiene toda su maquinaria a la vista.

VARIABLES RELATIVAS A LOS ARRAYS
o $[es el indice base de los arrays (default es 0)

e $" el separador de elementos cuando se interpola un string de comilla doble
(por defecto, es un espacio en blanco).

VARIABLES UTILIZADAS EN ARCHIVOS
o . contiene el Ultimo nimero de linea leido
e $/ terminacion de registro de entrada (default es "\n")

o $| si es diferente de 0, se vacia el buffer de salida después de print o write
(default es 0)

VARIABLES USADAS CON EXPRESIONES REGULARES
e $& contiene el ultimo string que hizo match
e $+ contiene el string que coincidié con el Ultimo paréntesis que hizo match

e $1,%$2,$3 memoria de los matches de los paréntesis

VARIABLES USADAS EN IMPRESION

o $\ se agrega al final del print (por defecto, nulo).

VARIABLES RELACIONADAS CON PROCESOS

e $0 el nombre del script de Perl.
e $! numero de error o string con el texto del error.
e O9ENV hash que tiene las variables de ambiente del programa

por ejemplo, $ENV{QUERY_STRING}

VARIABLES DIVERSAS

o $_ variable por defecto en la mayoria de las operaciones que realiza Perl.

e @ARGV Argumentos de la linea de comandos con que se llama al script.

e @_ Array con los parametros que se pasan en la llamada a una funcién.

e $@ El error que se ha producido en el ultimo bloque eval o do ejecutado
Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 41

José Miguel Prellezo Gutiérrez Octubre 2002

VIII. PAQUETES Y MODULOS

Paquetes

Un paquete es un espacio de nombres. Los espacios de nombres nos permiten utilizar
codigo de otros programadores sin que nuestras variables se confundan con las variables
declaradas con el mismo nombre por otras personas en otras partes del cédigo.

El uso mas comun de los paquetes es el de agrupar funciones que tienen algo en comun.
Veamos un ejemplo:

package PAQ 1; # Estamos en el espacio de nombres PAQ 1
Sa = 5; # variable del pagquete PAQ 1
sub funl { # funcidén del paquete PAQ 1

print "Sa\n";

package PAQ 2; # Estamos en el espacio de nombres PAQ 2
(salimos del paquete PAQ 1)

Sa = 7; # Variable $a del paquete PAQ 2

print Sa; # imprime 7

print $PAQ 1::a; # imprime 5

PAQ 1::funl(); # Llama a funl de PAQ 1; imprime: 5
PAQ 1->funl; # Llama a funl de PAQ 1; imprime: 5

Observa las dos formas equivalentes de llamar la funcién.

Cuando no usamos package estamos trabajando en el espacio de nombres main. Como
un paquete generalmente se hace para ser reutilizado muchas veces, se guarda en un
archivo libreria con la extension .pl, y los programas que lo quieren usar lo invocan con
require. Por ejemplo,

require "cgilib.pl";

la funcién require lee el archivo cgilib.pl si este no ha sido leido antes. El archivo no tiene
gue tener package pero si debe devolver verdadero; por tanto, lo mejor es que termine
con:
return 1;
o0 simplemente
1;

Las librerias ya no se usan tanto, pero si que conforman la base de lo que son los mddulos
sobre los que se sustenta la programacidn orientada a objetos en Perl.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 42
José Miguel Prellezo Gutiérrez Octubre 2002

Las funciones de un paquete reciben un parametro adicional segun el operador utilizado
para llamarlas:
package PAQ 1;
sub fun2 {
print "fun2 recibidé @ \n";

package PAQ 2;

PAQ 1::fun2("xyz");

Llama a fun2() e imprime: fun2 recibid xyz

ésta forma no se utiliza usualmente para llamar

funciones de mdédulos porque las funciones de

H+ HF= HF

médulos se escriben para utilizar un parametro
adicional.
PAQ 1->fun2 ("xyz");

llama a fun2() e imprime: fun2 recibid PAQ 1 xy=z

Observe que cuando se llama con PAQ_1->fun2, fun2 recibe un parametro adicional, que
es el nombre del paquete ("PAQ_1").

Si $r es una refencia a un objeto, y hacemos

Sr->fun2 ()
en este caso el parametro adicional que recibe fun2() es la referencia $r.
Ejemplo de uso de un package:

require Cwd;
ScurrentDir = Cwd::getcwd () ;
print “Directorio actual = ScurrentDir\n”;

Moédulos

Un médulo es un paquete en un archivo de su mismo nombre y extensién .pm. Se trata
de una particularizacion de los packages, en el cual se agrupan una serie de funciones y/o
variables sobre las cuales se pueden fijar unas reglas a la hora de exportar su contenido.
Los médulos constituyen divisiones légicas de un programa que tiene su funcionalidad
completamente definida y diferente del resto, y un mddulo se puede utilizar en mas de una
aplicacion.

Los nombres de los mdodulos suelen empezar por letra mayuscula. Por ejemplo, el mdédulo
vehiculo debe estar en el archivo vehiculo.pm

Vemos un ejemplo de como se define un modulo para agrupar la funcionalidad de
conversion de divisas entre Pesetas y Euros:

package Divisas;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 43
José Miguel Prellezo Gutiérrez Octubre 2002

use strict;
use Exporter;

use vars gw (SVERSION @ISA @EXPORT @EXPORT OK $EXPORT_ TAGS
SCAMBIO) ;

SVERSION = 1.00;
@ISA = gw(Exporter) ;

@EXPORT = qw () ;
@EXPORT OK = gw (Euro_ Pesetas Pesetas Euro) ;
$EXPORT _TAGS = (DEFAULT => \@EXPORT,
TODO => [gw(Euro Pesetas Pesetas Euro)]);

SCAMBIO = 166.386;

sub Euro Pesetas {
return int ($ [0] *SDivisgas::CAMBIO) ;

sub Pesetas Euro {
return int (100*$ [0] /$Divisas::CAMBIO) /100;

Veamos paso a paso que significa cada cosa:

En primer lugar, obtenemos un namespace declarando el nombre del paquete

Es una buena idea utilizar el use strict; en nuestros modulos para restringir el uso de
variables globales.

El médulo requiere el uso del mddulo Exporter, el cual proporciona funcionalidades
necesarias para el moédulo de cara a definir las funciones y/o variables que
deseamos exportar al namespace que esté utilizando éste maédulo.

El array @EXPORT contiene todos los simbolos que son exportados por defecto. Por
tanto, la funcion funcion_1 estara disponible sin mas que indicar que se esta
usando el modulo.

El array @EXPORT_OK contiene los simbolos que seran importados bajo demanda.

El hash %EXPORT_TAGS agrupa diferentes funciones o variables para ser
exportados por grupos en lugar de uno a uno como sucede en el caso anterior.
Existe una clave especial que es DEFAULT, y que debemos asignar a lo que se
exporta por defecto, es decir al array @EXPORT. Las demas claves pueden ser las
que deseemos, y en este ejemplo ponemos una (TODO) en la que se exporta todo.
Lo mas logico es hacer grupos de funcionalidades con diferentes claves.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 44
José Miguel Prellezo Gutiérrez Octubre 2002

e Cualquier otra funcion o variable definida en el mdédulo y que no haya sido incluida
en estas listas, sera privada y no podra ser invocada desde fuera del modulo a no
ser que utilicemos el prefijo del modulo.

Para importar un moddulo en un programa se utiliza use. la funcién use es similar a
require pero ademas ejecuta una funcion del médulo llamada import. También se puede
descargar un modulo una vez cargado, utilizando la sentencia no. Por ejemplo, para
utilizar el médulo anterior

use Divisas;
Se importa todo lo que figura por defecto (en @EXPORT) ;
Como no se ha puesto nada, hay que utilizar obligatoriamente

el prefijo Divisas:: al usar las funciones

print Divisas::Euro Pesetas (1),
print "\n";
print $Divisas::CAMBIO;

Otra posibilidad es traer los grupos de funciones que nos interesen (definidos en
%EXPORT_TAGS)

use Divisas gw(:TODO) ;

Se importa todo lo que figura en el tag TODO;

Ahora se puede suprimir el prefijo Divisas::

print Euro Pesetas (1) ;

print "\n";

print Pesetas Euro(1000) ;

El uso mas comun de un médulo es para permitir la programacion orientada a objetos.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 45
José Miguel Prellezo Gutiérrez Octubre 2002

IX. PROGRAMACION ORIENTADA A OBJETOS

Perl no proporciona un soporte directo a la programacion orientada a objetos, sino que es
una cuestion adicional que se ha afiadido al lenguaje.

Clases

Las clases son abstracciones de los objetos que va a utilizar nuestro programa, y en Perl se
sustentan sobre los mddulos que hemos visto con anterioridad.
Consideremos el siguiente ejemplo:

package Toro;
sub dice {
print "Un toro hace muuuuu!\n";

package Caballo;
sub dice {

Toro: :dice;
Caballo: :dice;

En él, estamos utilizando dos funciones que se llaman igual (sonido) pero situadas en dos
paquetes diferentes, cada uno de los cuales representa una clase. Otra forma de invocar
las funciones es mediante el operador flecha:

Toro->dice;
Caballo->dice;

E incluso se puede hacer lo siguiente:

St = “Toro”;
St->dice;

Cuando se utiliza el operador flecha sobre una clase, la funcion a la cual estamos
invocando recibe un parametro adicional, que es el nombre de la clase. Es decir, una
[lamada del tipo:

Clase->funcion (@args)
Es equivalente a:

Clase::funcion(“Clase”, @args) ;
Por tanto, podemos rescribir las clases para hacerla mas genéricas de la siguiente forma:

package Toro;
sub sonido { “muuuuu” }
sub dice {

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 46
José Miguel Prellezo Gutiérrez Octubre 2002

my S$Sclase = shift;
print "Un $clase hace ", S$clase->sonido, "!\n";

package Caballo;
sub sonido { “hiiii” }

sub dice {
my S$Sclase = shift;
print "Un $clase hace ", $clase->sonido, "!\n";

Si observamos las funciones dice en ambas clase vemos que son exactamente iguales. Lo
correcto en este caso es crear una clase Animal en la que ubiquemos las partes comunes
a ambas clases y heredemos dicha funcionalidad.

package Animal;
sub dice {
my S$Sclase = shift;
print "Un S$Sclase hace ", S$clase->sonido, "!\n";

package Toro;
@Toro: :ISA = (“Animal”) ;
sub sonido { “muuuuu” }

package Caballo;
@Caballo::ISA = (“Animal”) ;
sub sonido { “hiiii” }

Como vemos, el mecanismo que tiene Perl para heredar de una clase consiste en definir el
contenido del array @ISA. Su nombre (“is a”) deja bien claro que la clase que lo utiliza es
también la clase que hereda.

La secuencia de acciones que suceden cuando invocamos
Caballo->dice;
es la siguiente:

1. Perl construye la lista de argumentos para el método dice, que en este caso
se reduce al nombre de la clase “Caballo”.

Se busca el método Caballo::dice.

Al no encontrarlo, se busca en el array @ISA la lista de clases padre, y
encuentra Animal.

4. Se busca el método Animal::dice.
La variable interna $clase toma el valor “Caballo”.

6. Se ejecuta el método Caballo->sonido, el cual existe en la clase Caballo.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 47
José Miguel Prellezo Gutiérrez Octubre 2002

Supongamos que ahora queremos afiadir un burro a nuestra granja particular, pero
deseamos que al llamar al método dice, nos aparezca un mensaje como éste:

Un burro hace iiaaaaa!
Resulta ensordecedor

No podemos actuar de la misma forma que en los dos casos anteriores, ya que el
comportamiento por defecto del método dice no nos sirve, aunque si podemos utilizarlo
para imprimir la primera parte del mensaje.

La nueva clase seria:

package Burro;

@Burro: :ISA = (“Animal”) ;

sub sonido { “iiaaaaa” }

sub dice {
my S$Sclase = shift;
Sclase->SUPER: :dice;
print “Resulta ensordecedor”;

Con la sintaxis $clase->SUPER::dice; obligamos a buscar el método dice entre las clases
padre enumeradas en el array @ISA.

Objetos

Hasta ahora nos hemos centrado en las clases, y el método dice que hemos visto es un
método de clase. Sin embargo, lo realmente interesante es poder disponer de instancias
diferentes de una clase, cada una con su propia identidad; es decir, objetos.

En Perl, podemos utilizar un escalar para almacenar una referencia a un objeto o instancia
de una clase. La forma de crear un objeto consiste en dotar a la clase de una funciéon que
construya el objeto y devuelva una referencia al mismo.

Por convenio, se aume que el método constructor tenga el nombre new. La clase Burro
gueda finalmente asi:

package Burro;

@Burro: :ISA = (“Animal”) ;

sub sonido { “iiaaaaa” }

sub dice {
my S$Sclase = shift;
Sclase->SUPER: :dice;
print “Resulta ensordecedor”;

}

sub new {
my S$Sclase = shift;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 48
José Miguel Prellezo Gutiérrez Octubre 2002

my $self = {};
$self->{NOMBRE} = undef;
$self->{EDAD} = undef;
bless $self, sclase;
return S$self;

}

Y para crear un objeto, hacemos:

Sb = Burro->new;

Podemos acceder a las propiedades de este objeto poniendo:

$b->{NOMBRE }
$b->{EDAD}

“Platero”;
3;

Si creamos otra instancia de la misma clase con el constructor new, sus atributos NOMBRE
y EDAD son completamente independientes de los anteriores.

UNIVERSAL: La raiz de todas las clases

A partir de la version de Perl 5.004, se afiade de forma automatica al final del array @ISA
un elemento extra: la clase UNIVERSAL, que es por tanto la clase base de toda la
jerarquia de clases en Perl.

En la clase UNIVERSAL tenemos definidos los siguientes métodos:
e isal()

Indica si un objeto o clase es una instancia del nombre de la clase que se pasa
como parametro. Esto es, si hay una relacion jerarquica ascendente. Devuelve “1”
si es cierto y undef sin no lo es. Ejemplo

Sb = Burro->new() ;
print Sb->isa(“Animal”); # Imprime: 1
e can()

Sirve para determinar si una determinada funcion se puede ejecutar sobre una
instancia. Si es asi, devuelve una referencia a la funcidn.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 49
José Miguel Prellezo Gutiérrez Octubre 2002

X. MODULOS DE USO COMUN

En esta seccion se presentan brevemente algunos de los médulos que tenemos disponibles
en Perl y que resultan muy Uutiles.

Mail

Una de las tareas que frecuentemente realiza Perl es la lectura y/o envio de correo
electronico.

ENVIAR MAIL

Se basa en el uso de la funcidén sendmail

use Mail::Sendmail;

$mail = (To => 'su direccione@alli.com',
From => 'mi direccion@aqui.com',
Message => "Mensaje de prueba"

if (sendmail %mail) {

}

else {

}

Si precisamos enviar adjunto un fichero, utilizaremos:

print "Mail enviado correctamente.\n";

print "Error al enviar mail: $Mail::Sendmail::error\n";

use Mail: :Sender;

$sender = new Mail::Sender {
smtp => 'smtp.servidor.com',
from => 'mi direccion@aqui.com!'

}i

$sender->MailFile({to => 'la direccion@alli.com',
subject => 'Envio un fichero',
msg => "Texto del mensaje",
file => 'fichero.txt'}

LEER MAIL

Necesitamos conocer la direccion el servidor de POP3, un nombre de usuario y su
contrasefia. Utilizamos la funcionalidad del mddulo Mail::POP3Client.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 50
José Miguel Prellezo Gutiérrez Octubre 2002

use Mail: :POP3Client;

Spop = new Mail::POP3Client (

USER => "el usuario",
PASSWORD => "la contrasefia",
HOST => "pop3.servidor.com"
)
foreach ($pop->HeadAndBody(1, 10)) {

print $_, "\n";

J

Spop->Close;

Este ejemplo imprime la cabecera de cada mensaje y las 10 primeras lineas del mismo. El
modulo dispone de otras funciones para extraer Unicamente la cabecera del mensaje o el
cuerpo, identificando cada mail por su nimero.

LWP::Simple
Library for WWW access in Perl.

Este mddulo proporciona una simplificacion de la libreria de accesso al WWW libwww-perl,
y permite poder acceder al contenido de documentos HTML a través de su URL. Las
funciones mas importantes que tenemos disponibles son las siguientes:

e get($url)

Busca el documento identificado por $url (un string con la direccion) y lo devuelve.
Si no lo encuentra, devuelve undef.

e head($url)
Devuelve las cabeceras del documento especificado por su URL. Si tiene éxito la
Ilamada, retorna los dsiguientes cinco valores:

($content_type, $document_length, $modified_time, $expires, $server)

En caso de fallo, devuelve un array vacio.
e getprint ($url)

Obtiene e imprime el documento por la salida estandar (STDOUT) identificado por
su URL. El documento es impreso tal y como se recibe por la red. Si la solicitud
fallla, se imprime el cédigo de estado y el mensaje de error por la salida estandar
de error (STDERR).

La funcion devuelve el codigo de respuesta HTTP.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 51
José Miguel Prellezo Gutiérrez Octubre 2002

e getstore($url, $file)

Obtiene el documento especificado por su $url y lo gusrda en el fichero indicado en
$file. La funcion devuelve el cédigo de respuesta HTTP.

6D

Interface to Gd Graphics Library

Mediante éste modulo podemos generar de forma sencilla cualquier dibujo sencillo vy
exportarlo a los formatos graficos mas comunes como JPEG o PNG. Podemos combinar
esta libreria con GD::Graph para realizar graficos de barras, lineas o de tarta.

Ejemplo 1: Dibujar una elipse de color rojo

use GD;

Creamos el objeto Image que contiene el dibujo
Sim = new GD::Image (100,100) ;

Establecemos los colores a utilizar
Swhite = $im->colorAllocate(255,255,255) ;
Sblack = $im->colorAllocate(0,0,0) ;

Sred = Sim->colorAllocate(255,0,0) ;

Sblue = Sim->colorAllocate(0,0,255) ;

Hacemos el fondo transparente y entrelazado
Sim->transparent (Swhite) ;
Sim->interlaced('true') ;

Dibujamos un rectangulo Negro que bordea la figura
Sim->rectangle(0,0,99,99, $black) ;

Dibujamos un 6valo azul
Sim->arc(50,50,95,75,0,360, Sblue) ;

Rellenamos la figura en rojo
Sim->fill (50,50, sred) ;

Grabamos la imagen en un fichero
open IMG, “>imagen.jpg”;

binmode IMG;

print IMG $im->jpeg;

close IMG;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 52
José Miguel Prellezo Gutiérrez Octubre 2002

Ejemplo 2: Un grafico de lineas

use GD;
use GD::Graph::lines;

@data = (
[ll ENE n , n FEB" , IIMAR" , IIABR" , IIMA'Y" , n JUN" , IIJUL" , IIAGO n S IISEP"] ,
[1, 2, 5, 6, 3, 1.5, 1, 3, 4],
[5, 3, 1, 5, 6, 3.3, 0, 1, 3]

)
Sgraph = GD: :Graph::lines->new (400, 300);

Sgraph->set (

x label => 'Eje X',

y _label => 'Eje Y',

title => 'Un grafico simple',
y max value => 8,

y _tick number => 8,

y label skip => 2

)
$gd = sSgraph-splot (\@data) ;
open IMG, 'sfile.jpeg' or die $!;

binmode IMG;
print IMG $gd->jpeg;

close IMG;
Un grafico simple
&
[
cod
LT
e
11}
2 H
0] 1]]] 1 Y]]
ENE FEE MAR AER HAY UM JuL AGD cEP
Eje ¥
Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 53

José Miguel Prellezo Gutiérrez Octubre 2002

XI. DBI: BASES DE DATOS

El médulo DBI se usa para manipular una base de datos relacional, como Oracle, Access,
SQL Server, MySQL, etc. DBI significa Data Base Interface, y supone una capa de alto nivel
para acceder a una base de datos. Requiere tener instalado el modulo DBD (Data Base
Driver) de la base de datos correspondiente; p.e., si queremos acceder a Oracle,
precisaremos de DBD::Oracle.

Para utilizar este modulo es necesario un conocimiento del lenguaje de consultas SQL. En
el apéndice A se puede consultar un referencia rapida sobre dicho lenguaje.

Instalacion

Si tenemos la distribucion de Active State para plataformas Windows, debemos obtener el
paquete DBI.zip para instalavar a través de la herramienta PPM. Ademas, debemos instalar
el driver correspondiente a la base de datos a la que nos vamos a conectar. Si se trata de
MSAccess, podemos instalar el médulo DBD::0ODBC, o bien DBD::ADO.

Conexion a la base de datos

Supongamos que tenemos una base de datos MSAccess. Lo primero que tenemos que
hacer es una DSN de sistema que enlace a dicha base de datos (se hace con el
administrador de fuentes de datos ODBC, en el panel de control). Si la ponemos el nombre
AccessPerl,

use DBT;
use DBD: :0DBC;
Sdb = DBI->connect ('dbi:0ODBC:AccesgsPerl','', '');
Sdb contiene la conexidén a la base de datos
if(! defined $db) {
die “No se puede conectar a la base de datos\n”;

Operacion de consulta (SELECT)

Se limita a ejecutar consultas SQL basadas en la instruccion Select. Veamos dos ejemplos
de consulta:

e Se cargan los resultados en un array

Sstm = $db->prepare("select * from prueba") ;

Sstm es la sentencia SQL gque deseamos utilizar
Sstm->execute () ;
while(@data = $stm->fetchrow array()) {

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 54
José Miguel Prellezo Gutiérrez Octubre 2002

@data contiene en cada iteracidén una lista con

todas las columnas que hemos cargado en la Select
g

print "DATA= @data\n";

}

Sstm->finish () ;
e Se cargan los resultados en variables individuales

my $id, Sname;
Sstm = S$db->prepare("select codigo, nombre from prueba") ;
$stm->bind columns (\$id, \S$name) ;
Sstm->execute () ;
while($stm->fetch()) {
print "s$id Sname\n";
}

$stm->finish() ;

Operaciones de actualizacion (INSERT, UPDATE, DELETE)

Después de preparar la setencia, simplemente se ejecuta. Por ejemplo:

Sstm = S$db->prepare("insert into prueba (codigo, nombre)
values (5,'Perl’)");
Sstm->execute () ;

Sin embargo, existe una instruccion que permite aunar las dos anteriores:

Src = $db->do("insert into prueba (codigo, nombre) values
(5,"Perl’)");

Si la variable src no queda definida, se ha producido algun error.

Transacciones

Es necesario modificar los pardametros de la conexidn, haciendo:
Sdb = DBI->connect ('dbi:0ODBC:AccessPerl’',

i
’

i
I

{ AutoCommit => 0 });
Se recomienda dividir las sentencias en bloques dentro de eval, y luego chequear si ha
habido error para cancelar el bloque de acciones (rollback) o ejecutarlo definitivamente
(commit)

$sgll = “update ventas set num ventas=num ventas+1”;
$sgl2 = “update stock set num articulos= num articulos-1";
eval {

Sstml= $db->prepare($sqgll) ;
Sstm2= $db->prepare ($sql2) ;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 55
José Miguel Prellezo Gutiérrez Octubre 2002

Sstml->execute () ;
Sstm2->execute () ;
Sdb->commit () ;

Sstml->finish () ;
Sstm2->finish () ;

if(se@) |
warn “Database error:”, S$DBI::errstr, “\n”;
Sdb->rollback () ;

Desconexion de la base de datos

Es muy importante no olvidar cerrar la conexidon, ya que en caso contrario estamos
consumiendo recursos inadecuadamente. En plataformas Windows puede originar, bajo
algunas circunstancias errores de memoria graves. Para cerrar la conexidn, haremos:

Sdb->disconnect () ;

Control de errores

Cuando se genera un error en la comunicacion con la base de datos (lo mas comun es por
errores de programacién SQL), Perl genera un error que muestra por la salida estandar de
error (por defecto, la consola) y termina la ejecucién inmediatamente. Podemos controlar
el grado de errores que deseamos generar:

1. Solo mensaje de error, sin finalizar la ejecucién

Sdb = DBI->connect ('dbi:ODBC:AccessPerl', '', '',
{ PrintError => 1, RaiseError => 0 });

2. Mensaje de error y se aborta la ejecucién inmediatamente (lo que se hace por
defecto)

Sdb = DBI->connect ('dbi:0ODBC:AccessPerl', '', '',
{ PrintError => 1, RaiseError => 1 });

3. Ningln mensaje de error (habra que consultar la variable $DBI:err)

Sdb = DBI->connect ('dbi:0ODBC:AccessPerl', '', '',
{ PrintError => 0, RaiseError => 0 });

Informacion

¢ Informacion sobre el resultado de un prepare o execute

SDBI: :err
N° del error: es falso (no definido) si no hay error
SDBI::errstr

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 56
José Miguel Prellezo Gutiérrez Octubre 2002

Texto del error: es falso (no definido) si no hay error

¢ Informacion que se puede obtener después del execute

SDBI: : rOwWS
N° de filas afectadas, que puede ser 0

¢ Informacion sobre el nombre y tipo de las columnas:

$stm->{NAME}
Referencia a un array con los nombres de las columnas
S$stm->{NAME}->[0] da el nombre de la 1* columna.

$stm->{TYPE}
Referencia a un array con los tipos de las columnas
$stm->{TYPE}->[0] da el tipo de la 1* columna.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 57
José Miguel Prellezo Gutiérrez Octubre 2002

XII. CGI: COMMON GATEWAY INTERFACE

En todo servidor Web, disponemos de un directorio sonde podemos ubicar nuestras
paginas HTML. El servidor puede ofrecer una gran variedad de dosumentos HTML, pero
una caracteristica clave de estos ficheros es que su contenido es estatico, es decir, el
documento no cambia a menos que el administrador lo edite y lo cambie explicitamente.

Sin embargo, a menudo el contenido de los documentos no puede conocerse por
adelantado. Por ejemplo, si un sitio Web porporciona busqueda de documentos (como
Altavista), el resultado depende de las palabras clave que el usuario haya introducido en el
formulario de busqueda. Para permitir esto, el servidor Web cuenta con programas
externos llamados de pasarela o gateway.

Un programa de pasarela admite una entrada del usuario y reacciona devolviéndole los
datos que habia pedido formateados en un documento HTML. A menudo, el programa de
pasarela actia como un puente entre el servidor Web y otro depdsito de informacion,
como una base de datos.

Los programas de pasarela trabajan en el servidor Web. Para permitir que cualquiera
pueda escribir un programa de este tipo, es necesaria una especificacion de describa las
normas de interaccién entre el servidor Web y el programa de pasarela. Aqui es donde
interviene la Interface de Pasarela Comun (CGI, Common Gateway Interface en inglés).
CGI define la comunicacion entre el servidor Web y los programas de pasarela externos. La
siguiente figura describe la interrelacién entre el browser, el servidor Web y los programas
CGI:

Sitio Web
Sistema del usuario
Visor Web HTTP Servidor ceT Programa
(Netscape, Explorer) < > Web <4+—> CGI
Documentos Ficheros Base de
HTML de disco datos

Como se puede observar en la figura, el visor Web intercambia informacién con el servidor
Web utilizando el protocolo HTTP. El servidor Web y los programas CGI normalmente
funcionan en el mismo sistema en el que reside el servidor Web. Dependiendo del tipo de

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 58
José Miguel Prellezo Gutiérrez Octubre 2002

peticion que realice el visor, el servidor Web proporciona un documento de su propio
directorio de archivos o ejecuta un programa CGI. Conviene destacar que el protocolo CGI
no impone el uso de un determinado lenguaje de programacién cuando se construya un
rpgrama de pasarela, por lo que podremos utilizar el que nos resulte mas conveniente.

Secuencia de acciones CGI

Cuando el usuario recupera un documento dindmico HTML a través de CGI, la secuencia
basica que se sigue es la siguiente:

1. El usuario selecciona un enlace que provoca que que el visor Web solicite un
documento HTML que contiene un formulario.

2. El servidor Web envia el formulario HTML, que es mostrado por el visor.

El usuario cumplimenta los campos del formulario y pulsa el botén de envio
(submit). A su vez, el visor envia los datos del formulario usando un determinado
método (GET o POST), como se especifica en la etiqueta METHOD del FORM.
Independientemente del método elegido, el browser solicita el URL que figura en el
parametro ACTION del FORM.,

4. A partir del URL, el servidor Web detemina la ejecucion del programa CGI
correspondiente y envia la informacion a ese programa.

5. El programa CGI procesa la informacion y devuelve la respuesta HTML as servidor
Web (el cual lee la salida del programa CGI). Este programa puede realizar
consultas o actualizaciones en bases de datos, lectura o escritura en disco, etc. El
servidor, a su vez, devuelve el texto HTML al visor Web.

6. El visor Web muestra el documento recibido.

Métodos de envio GET y POST

Como hemos visto, en el atributo METHOD del FORM podemos especificar dos métodos,
GET y POST.

GET

El visor Web envia los datos del formulario como una parte del URL. Se utiliza el comando
HTTP GET para enviar los datos. La forma en la que se genera la URL se:

1. Los valores de todos los campos se concatenan en el URL especificado en el atributo
ACTION de la etiqueta <FORM>. Cada valor de campo aparece en el formato
nombre=valor (ahora vemos lo importante que es proporcionar un valor para el
atributo NAME de los componentes de un formulario).

2. Para asegurarse de que el servidor Web no confunde los caracteres especiales que
podrian aparecer en los datos del formulario, cualquier caracter con un significado
especial se codifica usando un encriptado especial.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 59
José Miguel Prellezo Gutiérrez Octubre 2002

Ejemplo:
Si en la pagina Web de Altavista introducimos la palabra “Java” y pulsamos en Search,
aparece la URL:

Cuando el servidor Web tiene que ejecutar el rpograma CGI, tiene ademas que pasarle la
informacidn recibida. Esto lo realiza a través de las variables de entorno del sistema, lo
cual impone una restriccion en cuanto al tamafio de los datos a pasar, ya que una variable
de entorno en algunos sistemas no puede superar los 1024 bytes de longitud.

En los primeros afios de la Web, el método GET era el Unico disponible.

POST

En el método POST de envio de datos, el visor Web utiliza el comando HTTP POST, e
incluye los datos del formulario en el nucleo del comando, por lo que no aparecen en la
propia URL como en el caso GET. Dadas las limitaciones del método GET, surgié el método
POST como una forma de superar todas sus trabas. POST permite gestionar cualquier
cantidad de datos, pues el visor envia los datos en un flujo independiente.

Ademas, el servidor Web no utiliza las variables de entorno para pasar la informacion al
programa CGI, sino que utiliza la entrada estandar del programa CGI, lo cual no imponen
restricciones de tamafio en cuanto al volumen de informacién a transferir.

¢CUANDO UTILIZAR GET Y cuANDO POST?

Debemos utilizar el modo GET cuando:
1. El volumen de informacion a transferir sea pequefio. Por ejemplo, GET es apropiado
para formularios de busqueda que requieren del usuario unas pocas palabras clave.
2. Se desea acceder a un programa CGI sin usar un formulario.
La llamada a una URL con el método GET no deberia ser capaz en teoria de alterar

nada en el servidor, por ejemplo, una base de datos. Es algo asi como “ver pero no
tocar”.

Por el contrario, debemos utilizar POST cuando:

1. El volumen de informacion a transferir sea elevado. Por ejemplo, cuando tengamos
un formulario con un campo de sugerencias que no impone una restriccion al
usuario en cuanto al niumero de caracteres a introducir.

2. Deberia emplearse siempre en operaciones mas complejas que las de soélo lectura,
como podria ser la actualizacion de registros en una base de datos.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 60
José Miguel Prellezo Gutiérrez Octubre 2002

Paso de pardmetros del servidor al programa CGI

Algunos detalles de este paso de informacion dependen del método utilizado (GET o
POST), pero en cualquier caso, sel servidor utiliza las variables de ambiente o de entorno
para proporcionar informacién util al programa CGI. Las variables de entorno mas

utilizadas son las siguientes:

Variable de entorno

Significado

CONTENT_LENGTH

NUmero de bytes de informacidon enviados (método POST).

CONTENT_TYPE

tipo MIME del contenido (s6lo con el método POST).

GATEWAY_INTERFACE

Nombre y nimero de versién del CGI (normalmente,
CGI/1.1).

HTTP_ACCEPT

Tipos MIME que acepta el visor Web.

HTTP_REFERER

URL del documento desde el cual parte la solicitud.

HTTP_USER_AGENT

Nombre y nimero de version del browser que realiza la
peticion.

PATH_INFO

Cualquier otro nombre de ruta que sigue al nombre del
programa CGI en la URL.

PATH_TRANSLATED

PATH_INFO anexado al directorio raiz del documento del
servidor.

QUERY_STRING

Todo lo que sigue al signo ? en la URL (método GET).

REMOTE_ADDR

Direccién IP del sistema desde el que parte la solicitud.

REMOTE_HOST

Nombre del sistema donde el usuario ejecuta el visor Web.

REQUEST_METHOD

Indica si es GET o POST

SCRIPT_NAME

Nombre del programa CGI

SERVER_NAME

Direccion IP o nombre del sistema donde se ejecuta el
servidor Web.

SERVER_PORT

Numero de puerto, generalmente el 80 u 8080.

SERVER_PROTOCOL

Nombre y versién del protocolo http.

La diferencia mas sustancial entre GET y POST radica en el hecho de que GET utiliza la
variable QUERY_INFO para pasar los datos al programa CGI, mientras que POST utliza la
entrada estandar, y ademas la variable de entorno CONTENT_LENGTH para saber la
longitud de los datos.

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 61
José Miguel Prellezo Gutiérrez Octubre 2002

Procesado de la informacion en el programa CGI

Un programa CGI puede estar preparado para aceptar la informacién en uno de los dos
métodos posibles, aunque lo usual es que esté preparado para trabjar tanto con GET como
con POST. Para ello, el programa deberia seguir los siguientes pasos:

1. Comprobar el valor de la variable de entorno REQUEST_METHOD para determinar si
la solicitud es de tipo GET o POST.

2. Si se trata de GET, usar el valor de la variable QUERY_STRING como entrada.
Comprobar también cualquier nueva informacién sobre la ruta en la variable de
ambiente PATH_INFO, y continuar en el paso (4).

3. Si se trata del método POST, obtener la longitud de la entrada (en nimero de
bytes) a partir de la variable de ambiente CONTENT_LENGTH. Después, leer los
bytes a partir de la entrada estandar.

4. Extraer los pares nombre=valor de varios campos dividiendo los datos de entrada
por el caracter &, que separa los valores de los campos.

5. En cada par nombre=valor, convertir todas las secuencias %xx en los caracteres
ASCII equivalentes (aqui, xx representa un par de digitos hexadecimales).
6. En cada par nombre=valor, convertir todos los caracteres + en espacios.

Una vez que tenemos la informacion de entrada, es cuando comienza realmente el trabajo
del programa CGI. Por ejemplo, puede actualizar una base de datos, mandar un correo,
etc.

Devolucion de datos desde el programa CGI

Independientemente de cémo se transfiere la informacion desde el servidor Web al
programa CGI, éste siempre devuelve informacion al servidor escribiendo en la salida
estandar. En otras palabras, si el programa CGI quiere devolver un documento HTML
(normalmente construido dinamicamente), el programa debe escribir dicho documento en
la salida estandar. El servidor Web procesa después esa salida y envia los datos de vuelta
al visor Web que originalmente envid la solicitud.

El programa CGI envia, ademas de los datos, una pequefia informacion de cabecera que
debe figurar al comienzo. Esa cabecera incluye el tipo MIME de los datos mediante una
linea como la siguiente:

Content-type: text/html
Hay que dejar una linea en blanco antes de comenzar a escribir el contenido de la
informacidon de vuelta. Existen varios tipos MIMES, pero el mas comun es el anterior, el
que se refiere a un documento HTML. Ejemplo de salida de un programa CGI:

Content-type: text/html

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 62
José Miguel Prellezo Gutiérrez Octubre 2002

<HTML>
<HEAD>
<TITLE>Prueba CGI</TITLE>
</HEAD>
<BODY>
Respuesta del programa CGI
</BODY>
</HTML>

Perl y C6GI

Sin duda alguna, Perl es el mejor candidato a la hora de elegir un lenguaje de
programacion en el desarrollo de programas CGI, fundamentalmente debido a las
siguientes razones:

1. Perl es un lenguaje disponible de forma gratuita para todas las plataformas.

2. Dispone de una gran cantidad de mddulos adicionales que facilitan sobremanera la
programacion de CGI'’s.

3. La potencia de Perl en el manejo de ficheros y la facilidad de la comunicacidn con
las bases de datos es practicamente inigualable.

4. Fuerte integraciéon de Perl dentro de los servidores Web mas populares: Apache y
Microsoft IIS.

Importante: Los scripts CGI en Perl deben contener en la primera linea del fichero la
ubicacién del intérprete de Perl. Si lo tenemos en C:\PERL, la linea en cuestion seria:

#! C:\PERL\BIN\PERL

El modulo CGI

El moédulo CGI.pm ofrece una interfaz de alto nivel que permite realizar scripts CGI
rapidamente.

El médulo CGI.pm puede ser utilizado de dos formas diferentes:
e Procedural. Adecuada para scripts pequefios

use CGI gw/:standard/;
print header (),
start html (-title=>’Saludos’),
hl (‘Saludos’),
‘Hola, mundo !’,
end html () ;

e Orientada a objetos. Mas adecuada para scripts grandes; ademas permite disponer
de varios objetos CGI dentro del mismo programa, con estados diferentes.

use CGI;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 63
José Miguel Prellezo Gutiérrez Octubre 2002

$Sg = new CGI;
print $g->header (),
$g->start_html (-title=>’Saludos’),
$g->hl (*Saludos’),
‘Hola, mundo !’,
Sg->end html () ;

CABECERA HTTP

El método header imprime la cabecera (por defecto text/html).

print $g->header () ;

COMIENZO DEL DOCUMENTO HTML

Genera la cabecera HTML, pone un titulo a la pagina, y abre el BODY:

print $g->start html(-title=>’Prueba Perl’, -
BGCOLOR=>'white’) ;

FINAL DEL DOCUMENTO HTML

Escribe el cierre del tag BODY de del tag HTML
print $g->end html () ;

TAGS DE FORMATO

print S$g->hr; # imprime <hr>

print $g->1i(“cursiva”) ; # imprime <iscursiva</i>
print $g->b(“negrita”) ; # imprime negrita
print S$g->hl (“Encabezado”) ; # imprime

<hls>encabezado</hl>

LECTURA DE PARAMETROS

El uso mas frecuente del moédulo CGI es la lectura de los parametros que recibe de un
formulario, independientemente de si se han enviado a través de GET o de POST.

Sname
Sage

Sg->param(‘nombre’) ;
Sg->param(‘edad’) ;

TAGS CON ATRIBUTOS

Para afiadir atributos a un tag html, se puede pasar una referencia a un array asociativo
como primer argumento; las claves y valores del array se convierten en los nombres y
valores de los atributos. Por ejemplo:

print $g->a({-href=>"enlace.html”}, “Pulsa para ir al enlace”);

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 64
José Miguel Prellezo Gutiérrez Octubre 2002

imprime: Pulsa para ir al enlace

TABLAS

Disponemos de los métodos

start table() # imprime <TABLE>
end table() # imprime </TABLE>
start Tr() # imprime <TR>
end Tr () # imprime </TR>

start _th() # imprime <TH>
end_th() # imprime </TH>

start _td() # imprime <TD>
end td() # imprime </TD>

FORMULARIOS

Para abrir el tag del formulario (<FORM>):
print S$Sg->startform(Smethod, S$action) ;

Para insertar una caja de texto:

print S$g->textfield(-name=>’'NombreDelCampo’,
-default=>’valor por defecto’,
-size=>20,
-maxlength=>40) ;

Para insertar un botdon de submit:
print $g->submit (-name=>’'button name’,

-value=>'caption’) ;

Para cerrar el tag del formulario (</FORM>)
print Sg->endform() ;

URL

Para obtener la URL del script, utilizaremos la funcién url ()

DEPURAR SCRIPTS EN PERL

Las labores de debug en Perl no estan tan refinadas como en otros entornos de
programacion como Visual Basic, por ejemplo. Sin embargo, al tratarse de un lenguaje

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 65
José Miguel Prellezo Gutiérrez Octubre 2002

interpretado, hace que la localizacion de errores sea rapida mediante la escritura de
mensajes con print.

Podemos probar un script de Perl para CGI sin mas que ejecutarlo desde la linea de
comandos (sin necesidad de tener un servidor Web activo). Aparecera el siguiente
mensaje:

(offline mode: enter name=value pairs on standard input)

ahora podemos introducir parejas de de datos nombre=valor, que simulan los datos que
recibiria este script del formulario html. Cada linea es una pareja distinta, y para finalizar
la introduccién de datos pulsaremos Ctrl Z . Lo que tecleamos podemos escribirlo en un
fichero y ahorrarnos un considerable esfuerzo, haciendo que la entrada estandar del script
sea tomada de dicho fichero. Por ejemplo:

perl miScript.pl < miFormulario.txt

Siendo miFormulario.txt un fichero que podria contener valores como los siguientes:

nombre=Jose Miguel
apellidos=Prellezo Gutierrez
centro=CESINE
fecha=02/10/1970

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 66
José Miguel Prellezo Gutiérrez Octubre 2002

XIII. PROGRAMACION EN RED: SOCKETS

Un socket es un punto de conexién a la red que comunica dos procesos. Podemos
considerar que un socket se conecta con otro en algun punto de la red, y cualquier cosa
que se escribe en uno de ellos se puede leer en el otro.

Existen varias librerias de comunicaciones en Perl, pero para preservar la sencillez,
utilizaremos el paquete 10::Socket, el cual suele figurar en todas las distribuciones de Perl.
Este paquete proporciona una interface muy sencilla, y para crear un socket basta con
I[lamar al constructor de la clase 10::Socket::INET.
use IO::Socket;
Se crea un socket de escucha en el puerto 1234.
Ssocket = IO::Socket::INET->new(Proto=>"tcp”,
LocalPort=>"1234",
Listen=>"1")
or die “No se puede abrir el socket\n”;

#
close Ssocket;

Como parametros para el constructor, le podemos pasar los siguientes:

e PeerAddr Direccion IP del host remoto.

e PeerPort Puerto IP del host remoto.

e LocalPort Puerto IP local.

e Proto Protocolo a utilizar (tcp, udp).

e Listen Hay que definirlo para los sockets de recepcion.
e Reuse Permite reutilizar el socket.

e Timeout Tiempo de espera para las operaciones.

Entrada/Salida simple

Para enviar y recibir informacién sobre un aocket, utilizamos el handle que nos devuelve el
constructor como si de un fichero se tratara. Veamos un ejemplo que hace una peticion
http por un documento a un servidor Web, y a continuacion imprime todo lo que recibe:

use I0::Socket;

Sserver = SARGVI[O0];

Sdocument = SARGVI[1];

Sremote = IO::Socket::INET->new(Proto=>"tcp”,
PeerAddr=>$server,
PeerPort=>"80",

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 67
José Miguel Prellezo Gutiérrez Octubre 2002

print
while (
close

Reuse=>1)
or die “No se pudo conectar a S$Sserver”;
Sremote “GET Sdocument http/1.0\n\n”;
<$remote>) {print}
Sremote;

Veamos otro ejemplo en el cual se espera a recibir datos, que son presentados en pantalla
inmediatamente:

use IO: :Socket;

Slocal

Se e
Sremot
while (
close

= I0::Socket::INET->new (Proto=>"tcp”,
LocalPort=>"1234",
Listen=>"1")
or die “No se puede abrir el socket\n”;

spera a una peticidén de conexidn
e = $local->accept;

<$remote>) { print }

Slocal, Sremote;

Para esperar la peticion de conexién, hay que llamar a la funcion accept del socket. Esta
llamada bloquea la ejecucién hasta que llega la peticion desde un socket, momento en el
cual devuelve un nuevo handle de socket que podemos usar.

Informacion sobre una conexion

Una vez que tenemos un socket que se comunica con otro a través de la red utilizando un
determinado protocolo, podemos tener informacidn sobre la identidad de quién esta
conectandose:

e $handle->peerhost

Devuelve la direccion IP del socket que se esta conectando

e $handle->peerport

Devuelve el puerto IP del socket que se esta conectando

Ejemplo: Servidor Web

Veamos un Servidor WWW minimo que recibe el comando GET de http.

use IO
Sroot
Sport

: :Socket;
= “C:/WebServer/Paginas”;
80;

Smaxconn = SOMAXCONN () ;

Sserve

r = IO::Socket::INET->new(Proto=>"tcp”,

Perl 5.0, un lenguaje multiuso Versién 1.6

José Miguel Prellezo Gutiérrez Octubre 2002

Pagina 68

LocalPort=>$port,
Listen=>$maxconn,
Reuse=>1)
or die “Perl-WebServer: no se puede arrancar”;
while($client = S$server-s>accept) {
La primera linea de una peticidn http 1.0/1.1 es del
tipo: “GET document HTTP/1.x”
@header = split(/ /, <S$Sclient>);
Surl = Sheader|[1];
ShttpVer = Sheader[2];
if ($header[0] eqg “GET”) {
if (open FILE, Sroot.$url) {
print $client “ShttpVer 200 OK\n\n”;
binmode FILE;
while (<FILE>) {
print Sclient $;
}

close FILE;
print Sclient “7;

}

else
print S$Sclient “$httpVer 404 File not found\n\n”;

}

close sclient;

Perl 5.0, un lenguaje multiuso Version 1.6 Pagina 69
José Miguel Prellezo Gutiérrez Octubre 2002

XIV. OLE EN WINDOWS

OLE (Object Linking and Embedding) es una tecnologia clave desarrollada por Microsoft
para sus sistemas operativos Windows. La terminologia cambia tan rapido como la
tecnologia, y no todo el mundo se pone de acuerdo en la utilizacion de términos como
ActiveX y OLE. Podemos considerar que OLE es un subconjunto de la tecnologia ActiveX,
encargada de la vinculacidon e incrustacion de objetos, y ambas se sustentan sobre COM
(Component Object Model).

COM proporciona un mecanismo para permitir la comunicacion entre los objetos de una
aplicaciéon o entre distintos procesos, proporcionando mecanismos para que un objeto
pueda mostrar su funcionalidad a través de una interface.

Por tanto, COM nos proporciona las conexiones y los interfaces que seran utilizados desde
OLE para conseguir la automatizacién, esto es que una aplicacion pueda ofrecer una
interface progamable.

Podemos utilizar un lenguaje de sripting para poder manejar y controlar las aplicaciones
con interfaces OLE y realizar operaciones permitidas por dicha interface.

Las aplicaciones que vienen con Microsoft Office (Word, Excel, Access), el propio Microsoft
Internet Explorer, etc. soportan la automatizacion OLE.

Existe un médulo para Perl que permite realizar scripts capaces de manejar y controlar
cualquier aplicacion que soporte la automatizacion OLE.

Para realizar scripts de éste tipo resulta imprescindible conocer las interfaces OLE que nos
proporciona cada aplicacion y utilizar el mdédulo de Perl Win32::0LE.

Veamos algunos ejemplos:

Control de Explorer

Este script abre el navegador Explorer y nos lleva a la pagina principal de el diario El Pais.

use Win32::0LE;
Sbrowser = Win32::0LE->new('InternetExplorer.Application') ;
Sbrowser->Navigate ('http://www.elpais.es', 1) ;

Control de Excel

El siguiente script crea una nueva hoja de calculo, accede a dos celdas para establecer dos
nimeros y genera una formula para sumar esos dos numeros en una tercera celda. Accede
al resultado para imprimirlo en la salida estandar.

use Win32::0LE;

Sexcel = Win32::0LE->new('Excel.Application')
or die “No se puede arrancar Excel\n”;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 70
José Miguel Prellezo Gutiérrez Octubre 2002

Sexcel->{'Visible'} = 1;

SnewBook = Sexcel->Workbooks->Add () ;
$newBook->{Title} = "Ventas 2001";
$newBook->{Subject} = "Ventas";

$newBook ->Worksheets(1)->Range('Al')->{Value} = '1';
$newBook ->Worksheets(1)->Range('Bl')->{Value} = '2';
$newBook ->Worksheets(1l)->Range('Cl')->{Formula} = '=A1+B1l';

print $newBook ->Worksheets(1l)->Range('Cl')->{Value};
$newBook->SaveAs ({Filename =>"“C:/temp/perl/Ventas2001.xls"});

Sexcel->Quit () ;

Control de Word

El siguiente ejemplo utiliza un documento Word que actia a modo de plantilla y busca y
sustituye unas marcas especiales por el texto correspondiente. Todos los datos originales
figuran en un fichero (Aplicaciones.txt), con los campos separados por #. Por cada linea
del fichero se genera un documento Word diferente.

use File: :Copy;
use Cwd;

use Win32::0LE;
use Win32::0LE::Const 'Microsoft Word';

open RESP, "Aplicaciones.txt"
or die "No se puede abrir el fichero de aplicaciones";

sub CargarInfoWord ({
my S$Sdest = shift;
my Sapp = shift;
my S$desc shift;
print "=> $dest\n";
my $doc = $word->{Documents}->Open ("$dest") ;

my S$search = $doc->Content->Find;
my Sreplace = $search->Replacement;
$search->{Text} = '@NOMBRE';

Sreplace->{Text} = $app;
$search—>Execute({Replace => wdReplaceAll});

$search->{Text} = '@DESCRIPCION';

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 71
José Miguel Prellezo Gutiérrez Octubre 2002

Sreplace->{Text} = $desc;
$search->Execute ({Replace => wdReplaceAll}) ;

$search->{Text} = '@i';
Sreplace->{Text} = $num doc++;
$search->Execute ({Replace => wdReplaceAll}) ;

Sdoc->Save;
Sdoc->Close;

Snum doc = 1;
Sword = Win32::0LE->new('Word.Application') ;
$word->{visible} = 1;

while (Slinea = <RESP>)

{
chomp $linea;
(Sresp, Sapp, Sdesc) = split(/#/, S$linea);
Sdest = cwd . "/Sresp/Sapp.doc";
copy cwd . "/../plantilla.doc", $dest;
CargarInfoWord S$dest, Sapp, S$desc;

Perl 5.0, un lenguaje multiuso Version 1.6 Pagina 72
José Miguel Prellezo Gutiérrez Octubre 2002

XV. XML

El lenguaje XML es una de las opciones preferidas en la actualidad para intercambiar
informacion entre aplicaciones, por lo que disponer de una herramientsa capaz de extraer
la informacién de un fichero en éste formato es muy importante.

XML ::Parser

Perl dispone del modulo XML::Parser, el cual actia como un interface compatible con
expat, el parser XML de James Clark, y permite encontrar o filtrar aquellas partes de un
documento XML en las que estamos interesados.

El modulo XML::Parser viene con la distribucion estandar de ActiveState, y se trata de un
modulo orientado a eventos, lo que significa que analiza el fichero XML y a medida que va
encontrando tags de comienzo o final, o cualquier informacion entre tags se va a llamar a
la funcidn manejadora que hayamos establecido.

Para saber como podemos usarlos, debemos conocer los eventos generados por el
XML::Parser y sus parametros.

EVENTOS

Veamos los eventos mds comunes y sus parametros junto con una breve descripcidn. El
primer parametro siempre es una instancia de Expat, un modulo de uso interno utilizado
para procesar el documento, y que a menos que tengamos buenads razones para
manipularlo, es mejor ignorarlo.

Handler (parametros) |Cuando sucede Ejemplo
Init (Expat) Al comenzar el procesado
Final (Expat) Al terminar el procesado

Start (Expat, Element [, |Cuando se detecta el comienzo de un | <TAG attri="vall"

Attl", Val [,...]]) tag XML attr2="va|2">
End (Expat, Element) Cuando se detecta el final de un tag|</TAG>
XML
Comment (Expat, Data) Para los comentarios <!-- comentario -->
Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 73

José Miguel Prellezo Gutiérrez Octubre 2002

Default (Expat, String) Cuando no hay un handler especifico
se llama al de por defecto.

Los tags del estilo <foo/>, lanzan tanto el evento Start como el End.

MANEJO DE LOS EVENTOS

Disparar un evento quiere decir que una funcidon en nuestro programa va a ser invocada.
Para ello, hay que comunicar al médulo XML::Parser cuales son las funciones manejadoras
de cada clase de eventos que estamos interesados en utilizar.

En el siguiente ejemplo, podemos ver como se puede leer un fichero en formato XML, y
como se llaman las funciones Start _handler y End_Handler a medida que se realiza la
lectura del fichero.

use XML: :Parser;

Creamos el objeto parser de XML
my Sparser = new XML::Parser () ;

Establecemos los handlers
Sparser->setHandlers (
Start => \&Start handler,
End => \&End handler,
Default => \&Default handler
) ;

Analizamos un fichero XML obtenido de la linea de comandos
my $filename = shift;
die "No existe 'S$filename'\n" unless -f $filename;

Sparser->parsefile ($filename) ;

La llamada a parsefile hace que se vayan llamando a las
funciones manejadoras de eventos que hemos definido con
ayuda de setHandlers

Manejadores de eventos

sub Start handler (
my $Sp = shift;
my $el = shift;

Perl 5.0, un lenguaje multiuso Versién 1.6 Pagina 74
José Miguel Prellezo Gutiérrez Octubre 2002

print "<S$Sel>\n";
while (my $key = shift) ({
my Sval = shift;

print " S$Skey = $val\n";

}

print "\n";

sub End handler (

my ($p:$el) = @_;
print "</$els>\n";

sub Default handler ({

my ($p,$str) = @ ;

print " default handler found

"$str'\n";

Perl 5.0, un lenguaje multiuso
José Miguel Prellezo Gutiérrez

Versién 1.6
Octubre 2002

Pagina 75

